# Lab 10 for the University of Tulsa's CS-6643 Bioinformatics Course # Phylogenetic Analysis # Professor: Dr. McKinney, Fall 2022 # Noah L. Schrick - 1492657 ## Set Working Directory to file directory - RStudio approach setwd(dirname(rstudioapi::getActiveDocumentContext()$path)) #### Part A: GenBank sequences and a multiple fasta file if (!require("ape")) install.packages("ape") library(ape) # needed for read.GenBank # fetch the mtDNA sequences mtDNA.MultiSeqs.list<-read.GenBank(c("AF011222","AF254446","X90314","AF089820", "AF176766","AF451972", "AY079510", "AF050738","AF176722","AF315498", "AF176731","AF451964"), as.character=TRUE) # look at species names mtDNA.Species<-attr(mtDNA.MultiSeqs.list,"species") # use species as name instead of genbank id names(mtDNA.MultiSeqs.list)<-mtDNA.Species # need to fix some names names(mtDNA.MultiSeqs.list)[1] <- paste("German_Neanderthal",sep="") names(mtDNA.MultiSeqs.list)[2] <- paste("Russian_Neanderthal",sep="") names(mtDNA.MultiSeqs.list)[3] <- paste("Human") names(mtDNA.MultiSeqs.list)[6] <- paste("Puti_Orangutan",sep="") names(mtDNA.MultiSeqs.list)[12] <- paste("Jari_Orangutan",sep="") length(mtDNA.MultiSeqs.list$Human) # look at one of the sequences using $ mtDNA.MultiSeqs.list$Human ## Convert to Biostrings object for the sequences if (!require("BiocManager")) install.packages("BiocManager") library(BiocManager) if (!require("Biostrings")) BiocManager::install("Biostrings") library(Biostrings) # loop through the list to create vector of strings for Biostrings input Names.vec <- c() # initialize speices names string vector Seqs.vec <- c() # initialize sequence string vector for (mtDNA.name in names(mtDNA.MultiSeqs.list)) { Names.vec <- c(Names.vec,mtDNA.name) # concatenate vector Seqs.vec <-c(Seqs.vec,paste(mtDNA.MultiSeqs.list[[mtDNA.name]],collapse="")) } mtDNA.multSeqs.bstr <- DNAStringSet(Seqs.vec) # convert to Biostring # name the Biostring sequences and compute stats names(mtDNA.multSeqs.bstr) <- Names.vec # count nucs and sequence lengths num.nts <- alphabetFrequency(mtDNA.multSeqs.bstr)[,1:4] mtDNA.lengths <- rowSums(num.nts) proportion.nts <- num.nts/mtDNA.lengths # Obtain name and length of species with longest sequence nlengthnames <- cbind(mtDNA.lengths, Names.vec) idx <- which.max(nlengthnames[,1]) nlengthnames[idx,] #### Part B: Multiple Sequence Alignment if (!require("BiocManager")) install.packages("BiocManager") library(BiocManager) if (!require("msa")) BiocManager::install("msa") library(msa) mtDNA.msa <- msa(mtDNA.multSeqs.bstr,method="ClustalOmega") msaPrettyPrint(mtDNA.msa, file="mtDNA.pdf", output="pdf", showNames="left", showLogo="none", askForOverwrite=FALSE, verbose=TRUE ) ## loop to make results data frame num_seqs <- length(Names.vec) # initialize data frame align.stats.df <- data.frame(species=rep(NA,num_seqs), seqlen=rep(0,num_seqs), numgaps=rep(0,num_seqs), nt_a=rep(NA,num_seqs), nt_c=rep(NA,num_seqs), nt_g=rep(NA,num_seqs), nt_t=rep(NA,num_seqs)) # DNAbin type required for dist.dna and helpful for other calculations mtDNA.msa.DNAbin <- as.DNAbin(mtDNA.msa) for (i in 1:num_seqs){ seq_name <- Names.vec[i] seq.vec <- as.character(mtDNA.msa.DNAbin[i,]) num.gaps <- sum(seq.vec=="-") prop.nt.i <- proportion.nts[i,] align.stats.df[i,] <- c(seq_name, mtDNA.lengths[i], num.gaps, round(prop.nt.i[1],digits=2), round(prop.nt.i[2],digits=2), round(prop.nt.i[3],digits=2), round(prop.nt.i[4],digits=2)) } # write to file write.table(align.stats.df,file="alignstats.tab",sep = "\t", row.names=FALSE, quote=FALSE) # you can use $ operator to grab a named column from a data.frame # similar to grabbing a named variable from a list align.stats.df$species align.stats.df$nt_a # strings by default as.numeric(align.stats.df$nt_a) # convert to numeric #### Part C: DNA distance matrices and phylogenetic trees # Compute Distances mtDNA.dist <- dist.dna(mtDNA.msa.DNAbin,model="K80") # manually find closest species mtDNA.dist.mat <-as.matrix(mtDNA.dist) diag(mtDNA.dist.mat)<-1 # force diagonal to be 1, not 0 which(mtDNA.dist.mat == min(mtDNA.dist.mat), arr.ind = TRUE) ## Make tree from distance matrix hc<- hclust(as.dist(mtDNA.dist.mat)) # transform to dist object first plot(hc,xlab="species",ylab="distance") ## UPGMA if (!require("phangorn")) install.packages("phangorn") library(phangorn) mtDNA.tree.nj <- NJ(mtDNA.dist) # phangorn function plot(mtDNA.tree.nj, main="Neighbor Joining Tree (rooted) for primates") mtDNA.tree.upgma <- upgma(mtDNA.dist) plot(mtDNA.tree.upgma, show.node.label = TRUE, main="UPGMA Tree for Primates") source("msaUtils.R") # load msaConvert function into memory mtDNA.msa.phangorn <-msaConvert(mtDNA.msa,type="phangorn::phyDat") parsimony(mtDNA.tree.nj, mtDNA.msa.phangorn) # bootstrap to show support for tree edges # creates trees from bootstrap samples and checks how often # that edge appears. Show consistency of tree edge. bs.trees <- bootstrap.phyDat(mtDNA.msa.phangorn, FUN=function(x)NJ(dist.dna(as.DNAbin(x),model="K80")), bs=100) plotBS(mtDNA.tree.nj, bs.trees, "phylogram", main="Neighbor Joining") parsimony(mtDNA.tree.upgma, mtDNA.msa.phangorn) bs.upgma.trees <- bootstrap.phyDat(mtDNA.msa.phangorn, FUN=function(x)upgma(dist.dna(as.DNAbin(x),model="K80")), bs=100) plotBS(mtDNA.tree.upgma, bs.upgma.trees, "phylogram", main="UPGMA") #### Part D: Multidimensional Scaling # 2d MDS viz locs<-cmdscale(as.dist(mtDNA.dist)) x<-locs[,1] y<-locs[,2] plot(x,y,main="Multi-dimensional Scaling",xlab="MDS dimension-1",ylab="MDS dimension-2", xlim=c(-.3,.35)) text(x,y,rownames(locs),cex=0.5) library(rgl) locs<-cmdscale(as.dist(mtDNA.dist),k=3) x<-locs[,1] y<-locs[,2] z<-locs[,3] plot3d(x,y,z) text3d(x=x,y=y,z=z,texts=rownames(locs),cex=1.5) play3d(spin3d(axis=c(0,1,1), rpm=3), duration=30)