Finalizing Multiple Sequence Alignment
This commit is contained in:
parent
bd4cfb8688
commit
056dcb299b
512
.Rhistory
Normal file
512
.Rhistory
Normal file
@ -0,0 +1,512 @@
|
||||
################# Max-Log-Likelihood #################
|
||||
n <- length(g.breaks.clean)
|
||||
kmin <- g.breaks.clean[1]
|
||||
alpha.ML <- 1 + n/sum(log(g.breaks.clean)/kmin)
|
||||
alpha.ML
|
||||
lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4)
|
||||
# Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course
|
||||
# Degree Distribution
|
||||
# Professor: Dr. McKinney, Spring 2022
|
||||
# Noah Schrick - 1492657
|
||||
library(igraph)
|
||||
library(igraphdata)
|
||||
data(yeast)
|
||||
g <- yeast
|
||||
g.netname <- "Yeast"
|
||||
################# Set up Work #################
|
||||
g.vec <- degree(g)
|
||||
g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname,
|
||||
" Network"))
|
||||
legend("topright", c("Guess", "Poisson", "Least-Squares Fit",
|
||||
"Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6",
|
||||
"#006CD1", "#E66100", "#D35FB7"))
|
||||
g.mean <- mean(g.vec)
|
||||
g.seq <- 0:max(g.vec) # x-axis
|
||||
################# Guessing Alpha #################
|
||||
alpha.guess <- 1.5
|
||||
lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1)
|
||||
################# Poisson #################
|
||||
g.pois <- dpois(g.seq, g.mean, log=F)
|
||||
lines(g.seq, g.pois, col="#006CD1", lty=2)
|
||||
################# Linear model: Least-Squares Fit #################
|
||||
g.breaks <- g.hist$breaks[-c(1,2,3)] # remove 0
|
||||
g.probs <- g.hist$density[-1] # make lengths match
|
||||
# Need to clean up probabilities that are 0
|
||||
nz.probs.mask <- g.probs!=0
|
||||
g.breaks.clean <- g.breaks[nz.probs.mask]
|
||||
g.probs.clean <- g.breaks[nz.probs.mask]
|
||||
#plot(log(g.breaks.clean), log(g.probs.clean))
|
||||
g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean))
|
||||
summary(g.fit)
|
||||
alpha.LM <- coef(g.fit)[2]
|
||||
lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3)
|
||||
################# Max-Log-Likelihood #################
|
||||
n <- length(g.breaks.clean)
|
||||
kmin <- g.breaks.clean[1]
|
||||
alpha.ML <- 1 + n/sum(log(g.breaks.clean)/kmin)
|
||||
alpha.ML
|
||||
lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4)
|
||||
# Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course
|
||||
# Degree Distribution
|
||||
# Professor: Dr. McKinney, Spring 2022
|
||||
# Noah Schrick - 1492657
|
||||
library(igraph)
|
||||
library(igraphdata)
|
||||
data(yeast)
|
||||
g <- yeast
|
||||
g.netname <- "Yeast"
|
||||
################# Set up Work #################
|
||||
g.vec <- degree(g)
|
||||
g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname,
|
||||
" Network"))
|
||||
legend("topright", c("Guess", "Poisson", "Least-Squares Fit",
|
||||
"Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6",
|
||||
"#006CD1", "#E66100", "#D35FB7"))
|
||||
g.mean <- mean(g.vec)
|
||||
g.seq <- 0:max(g.vec) # x-axis
|
||||
################# Guessing Alpha #################
|
||||
alpha.guess <- 1.5
|
||||
lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1)
|
||||
################# Poisson #################
|
||||
g.pois <- dpois(g.seq, g.mean, log=F)
|
||||
lines(g.seq, g.pois, col="#006CD1", lty=2)
|
||||
################# Linear model: Least-Squares Fit #################
|
||||
g.breaks <- g.hist$breaks[-c(1)] # remove 0
|
||||
g.probs <- g.hist$density[-1] # make lengths match
|
||||
# Need to clean up probabilities that are 0
|
||||
nz.probs.mask <- g.probs!=0
|
||||
g.breaks.clean <- g.breaks[nz.probs.mask]
|
||||
g.probs.clean <- g.breaks[nz.probs.mask]
|
||||
#plot(log(g.breaks.clean), log(g.probs.clean))
|
||||
g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean))
|
||||
summary(g.fit)
|
||||
alpha.LM <- coef(g.fit)[2]
|
||||
lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3)
|
||||
################# Max-Log-Likelihood #################
|
||||
n <- length(g.breaks.clean)
|
||||
kmin <- g.breaks.clean[1]
|
||||
alpha.ML <- 1 + n/sum(log(g.breaks.clean)/kmin)
|
||||
alpha.ML
|
||||
lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4)
|
||||
# Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course
|
||||
# Degree Distribution
|
||||
# Professor: Dr. McKinney, Spring 2022
|
||||
# Noah Schrick - 1492657
|
||||
library(igraph)
|
||||
library(igraphdata)
|
||||
data(yeast)
|
||||
g <- yeast
|
||||
g.netname <- "Yeast"
|
||||
################# Set up Work #################
|
||||
g.vec <- degree(g)
|
||||
g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname,
|
||||
" Network"))
|
||||
legend("topright", c("Guess", "Poisson", "Least-Squares Fit",
|
||||
"Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6",
|
||||
"#006CD1", "#E66100", "#D35FB7"))
|
||||
g.mean <- mean(g.vec)
|
||||
g.seq <- 0:max(g.vec) # x-axis
|
||||
################# Guessing Alpha #################
|
||||
alpha.guess <- 1.5
|
||||
lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1)
|
||||
################# Poisson #################
|
||||
g.pois <- dpois(g.seq, g.mean, log=F)
|
||||
lines(g.seq, g.pois, col="#006CD1", lty=2)
|
||||
################# Linear model: Least-Squares Fit #################
|
||||
#g.breaks <- g.hist$breaks[-c(1)] # remove 0
|
||||
g.breaks <- g.hist$breaks # remove 0
|
||||
g.probs <- g.hist$density[-1] # make lengths match
|
||||
# Need to clean up probabilities that are 0
|
||||
nz.probs.mask <- g.probs!=0
|
||||
g.breaks.clean <- g.breaks[nz.probs.mask]
|
||||
g.probs.clean <- g.breaks[nz.probs.mask]
|
||||
#plot(log(g.breaks.clean), log(g.probs.clean))
|
||||
g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean))
|
||||
summary(g.fit)
|
||||
alpha.LM <- coef(g.fit)[2]
|
||||
lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3)
|
||||
################# Max-Log-Likelihood #################
|
||||
n <- length(g.breaks.clean)
|
||||
kmin <- g.breaks.clean[1]
|
||||
alpha.ML <- 1 + n/sum(log(g.breaks.clean)/kmin)
|
||||
alpha.ML
|
||||
lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4)
|
||||
# Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course
|
||||
# Degree Distribution
|
||||
# Professor: Dr. McKinney, Spring 2022
|
||||
# Noah Schrick - 1492657
|
||||
library(igraph)
|
||||
library(igraphdata)
|
||||
data(yeast)
|
||||
g <- yeast
|
||||
g.netname <- "Yeast"
|
||||
################# Set up Work #################
|
||||
g.vec <- degree(g)
|
||||
g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname,
|
||||
" Network"))
|
||||
legend("topright", c("Guess", "Poisson", "Least-Squares Fit",
|
||||
"Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6",
|
||||
"#006CD1", "#E66100", "#D35FB7"))
|
||||
g.mean <- mean(g.vec)
|
||||
g.seq <- 0:max(g.vec) # x-axis
|
||||
################# Guessing Alpha #################
|
||||
alpha.guess <- 1.5
|
||||
lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1)
|
||||
################# Poisson #################
|
||||
g.pois <- dpois(g.seq, g.mean, log=F)
|
||||
lines(g.seq, g.pois, col="#006CD1", lty=2)
|
||||
################# Linear model: Least-Squares Fit #################
|
||||
g.breaks <- g.hist$breaks[-c(1)] # remove 0
|
||||
g.probs <- g.hist$density[-1] # make lengths match
|
||||
# Need to clean up probabilities that are 0
|
||||
nz.probs.mask <- g.probs!=0
|
||||
g.breaks.clean <- g.breaks[nz.probs.mask]
|
||||
g.probs.clean <- g.probs[nz.probs.mask]
|
||||
#plot(log(g.breaks.clean), log(g.probs.clean))
|
||||
g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean))
|
||||
summary(g.fit)
|
||||
alpha.LM <- coef(g.fit)[2]
|
||||
lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3)
|
||||
################# Max-Log-Likelihood #################
|
||||
n <- length(g.breaks.clean)
|
||||
kmin <- g.breaks.clean[1]
|
||||
alpha.ML <- 1 + n/sum(log(g.breaks.clean)/kmin)
|
||||
alpha.ML
|
||||
lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4)
|
||||
alpha.LM
|
||||
# Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course
|
||||
# Degree Distribution
|
||||
# Professor: Dr. McKinney, Spring 2022
|
||||
# Noah Schrick - 1492657
|
||||
library(igraph)
|
||||
library(igraphdata)
|
||||
data(yeast)
|
||||
g <- yeast
|
||||
g.netname <- "Yeast"
|
||||
################# Set up Work #################
|
||||
g.vec <- degree(g)
|
||||
g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname,
|
||||
" Network"))
|
||||
legend("topright", c("Guess", "Poisson", "Least-Squares Fit",
|
||||
"Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6",
|
||||
"#006CD1", "#E66100", "#D35FB7"))
|
||||
g.mean <- mean(g.vec)
|
||||
g.seq <- 0:max(g.vec) # x-axis
|
||||
################# Guessing Alpha #################
|
||||
alpha.guess <- 1.5
|
||||
lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1)
|
||||
################# Poisson #################
|
||||
g.pois <- dpois(g.seq, g.mean, log=F)
|
||||
lines(g.seq, g.pois, col="#006CD1", lty=2)
|
||||
################# Linear model: Least-Squares Fit #################
|
||||
g.breaks <- g.hist$breaks[-c(1)] # remove 0
|
||||
g.probs <- g.hist$density[-1] # make lengths match
|
||||
# Need to clean up probabilities that are 0
|
||||
nz.probs.mask <- g.probs!=0
|
||||
g.breaks.clean <- g.breaks[nz.probs.mask]
|
||||
g.probs.clean <- g.probs[nz.probs.mask]
|
||||
#plot(log(g.breaks.clean), log(g.probs.clean))
|
||||
g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean))
|
||||
summary(g.fit)
|
||||
alpha.LM <- coef(g.fit)[2]
|
||||
lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3)
|
||||
################# Max-Log-Likelihood #################
|
||||
n <- length(g.breaks.clean)
|
||||
kmin <- g.breaks.clean[1]
|
||||
alpha.ML <- 1 + n/sum(log(g.breaks.clean/kmin))
|
||||
alpha.ML
|
||||
lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4)
|
||||
# Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course
|
||||
# Degree Distribution
|
||||
# Professor: Dr. McKinney, Spring 2022
|
||||
# Noah Schrick - 1492657
|
||||
library(igraph)
|
||||
library(igraphdata)
|
||||
data(yeast)
|
||||
g <- yeast
|
||||
g.netname <- "Yeast"
|
||||
################# Set up Work #################
|
||||
g.vec <- degree(g)
|
||||
g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname,
|
||||
" Network"))
|
||||
legend("topright", c("Guess", "Poisson", "Least-Squares Fit",
|
||||
"Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6",
|
||||
"#006CD1", "#E66100", "#D35FB7"))
|
||||
g.mean <- mean(g.vec)
|
||||
g.seq <- 0:max(g.vec) # x-axis
|
||||
################# Guessing Alpha #################
|
||||
alpha.guess <- 1.5
|
||||
lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1, lwd=5)
|
||||
################# Poisson #################
|
||||
g.pois <- dpois(g.seq, g.mean, log=F)
|
||||
lines(g.seq, g.pois, col="#006CD1", lty=2)
|
||||
################# Linear model: Least-Squares Fit #################
|
||||
g.breaks <- g.hist$breaks[-c(1)] # remove 0
|
||||
g.probs <- g.hist$density[-1] # make lengths match
|
||||
# Need to clean up probabilities that are 0
|
||||
nz.probs.mask <- g.probs!=0
|
||||
g.breaks.clean <- g.breaks[nz.probs.mask]
|
||||
g.probs.clean <- g.probs[nz.probs.mask]
|
||||
#plot(log(g.breaks.clean), log(g.probs.clean))
|
||||
g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean))
|
||||
summary(g.fit)
|
||||
alpha.LM <- coef(g.fit)[2]
|
||||
lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3)
|
||||
################# Max-Log-Likelihood #################
|
||||
n <- length(g.breaks.clean)
|
||||
kmin <- g.breaks.clean[1]
|
||||
alpha.ML <- 1 + n/sum(log(g.breaks.clean/kmin))
|
||||
alpha.ML
|
||||
lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4)
|
||||
# Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course
|
||||
# Degree Distribution
|
||||
# Professor: Dr. McKinney, Spring 2022
|
||||
# Noah Schrick - 1492657
|
||||
library(igraph)
|
||||
library(igraphdata)
|
||||
data(yeast)
|
||||
g <- yeast
|
||||
g.netname <- "Yeast"
|
||||
################# Set up Work #################
|
||||
g.vec <- degree(g)
|
||||
g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname,
|
||||
" Network"))
|
||||
legend("topright", c("Guess", "Poisson", "Least-Squares Fit",
|
||||
"Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6",
|
||||
"#006CD1", "#E66100", "#D35FB7"))
|
||||
g.mean <- mean(g.vec)
|
||||
g.seq <- 0:max(g.vec) # x-axis
|
||||
################# Guessing Alpha #################
|
||||
alpha.guess <- 1.5
|
||||
lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1, lwd=3)
|
||||
################# Poisson #################
|
||||
g.pois <- dpois(g.seq, g.mean, log=F)
|
||||
lines(g.seq, g.pois, col="#006CD1", lty=2)
|
||||
################# Linear model: Least-Squares Fit #################
|
||||
g.breaks <- g.hist$breaks[-c(1)] # remove 0
|
||||
g.probs <- g.hist$density[-1] # make lengths match
|
||||
# Need to clean up probabilities that are 0
|
||||
nz.probs.mask <- g.probs!=0
|
||||
g.breaks.clean <- g.breaks[nz.probs.mask]
|
||||
g.probs.clean <- g.probs[nz.probs.mask]
|
||||
#plot(log(g.breaks.clean), log(g.probs.clean))
|
||||
g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean))
|
||||
summary(g.fit)
|
||||
alpha.LM <- coef(g.fit)[2]
|
||||
lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3)
|
||||
################# Max-Log-Likelihood #################
|
||||
n <- length(g.breaks.clean)
|
||||
kmin <- g.breaks.clean[1]
|
||||
alpha.ML <- 1 + n/sum(log(g.breaks.clean/kmin))
|
||||
alpha.ML
|
||||
lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4)
|
||||
# Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course
|
||||
# Degree Distribution
|
||||
# Professor: Dr. McKinney, Spring 2022
|
||||
# Noah Schrick - 1492657
|
||||
library(igraph)
|
||||
library(igraphdata)
|
||||
data(yeast)
|
||||
g <- yeast
|
||||
g.netname <- "Yeast"
|
||||
################# Set up Work #################
|
||||
g.vec <- degree(g)
|
||||
g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname,
|
||||
" Network"))
|
||||
legend("topright", c("Guess", "Poisson", "Least-Squares Fit",
|
||||
"Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6",
|
||||
"#006CD1", "#E66100", "#D35FB7"))
|
||||
g.mean <- mean(g.vec)
|
||||
g.seq <- 0:max(g.vec) # x-axis
|
||||
################# Guessing Alpha #################
|
||||
alpha.guess <- 1.5
|
||||
lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1, lwd=3)
|
||||
################# Poisson #################
|
||||
g.pois <- dpois(g.seq, g.mean, log=F)
|
||||
lines(g.seq, g.pois, col="#006CD1", lty=2, lwd=3)
|
||||
################# Linear model: Least-Squares Fit #################
|
||||
g.breaks <- g.hist$breaks[-c(1)] # remove 0
|
||||
g.probs <- g.hist$density[-1] # make lengths match
|
||||
# Need to clean up probabilities that are 0
|
||||
nz.probs.mask <- g.probs!=0
|
||||
g.breaks.clean <- g.breaks[nz.probs.mask]
|
||||
g.probs.clean <- g.probs[nz.probs.mask]
|
||||
#plot(log(g.breaks.clean), log(g.probs.clean))
|
||||
g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean))
|
||||
summary(g.fit)
|
||||
alpha.LM <- coef(g.fit)[2]
|
||||
lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3, lwd=3)
|
||||
################# Max-Log-Likelihood #################
|
||||
n <- length(g.breaks.clean)
|
||||
kmin <- g.breaks.clean[1]
|
||||
alpha.ML <- 1 + n/sum(log(g.breaks.clean/kmin))
|
||||
alpha.ML
|
||||
lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4, lwd=3)
|
||||
plot(yeast)
|
||||
hist(yeast)
|
||||
hist(g.vec)
|
||||
g.pois
|
||||
g.mean
|
||||
alpha.LM
|
||||
alpha.ML
|
||||
degree(g)
|
||||
sort(degree(g))
|
||||
sort(degree(g),decreasing=FALSE)
|
||||
sort(degree(g),decreasing=F)
|
||||
sort(degree(g),decreasing=false)
|
||||
sort(degree(g), decreasing = TRUE)
|
||||
head(sort(degree(g), decreasing = TRUE))
|
||||
stddev(degree(g))
|
||||
sd(degree(g))
|
||||
tail(sort(degree(g), decreasing = TRUE))
|
||||
plot(log(g.breaks.clean), log(g.probs.clean))
|
||||
# Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course
|
||||
# Degree Distribution
|
||||
# Professor: Dr. McKinney, Spring 2022
|
||||
# Noah Schrick - 1492657
|
||||
library(igraph)
|
||||
library(igraphdata)
|
||||
data(yeast)
|
||||
g <- yeast
|
||||
g.netname <- "Yeast"
|
||||
################# Set up Work #################
|
||||
g.vec <- degree(g)
|
||||
g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname,
|
||||
" Network"))
|
||||
legend("topright", c("Guess", "Poisson", "Least-Squares Fit",
|
||||
"Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6",
|
||||
"#006CD1", "#E66100", "#D35FB7"))
|
||||
g.mean <- mean(g.vec)
|
||||
g.seq <- 0:max(g.vec) # x-axis
|
||||
################# Guessing Alpha #################
|
||||
alpha.guess <- 1.5
|
||||
lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1, lwd=3)
|
||||
################# Poisson #################
|
||||
g.pois <- dpois(g.seq, g.mean, log=F)
|
||||
lines(g.seq, g.pois, col="#006CD1", lty=2, lwd=3)
|
||||
################# Linear model: Least-Squares Fit #################
|
||||
g.breaks <- g.hist$breaks[-c(1)] # remove 0
|
||||
g.probs <- g.hist$density[-1] # make lengths match
|
||||
# Need to clean up probabilities that are 0
|
||||
nz.probs.mask <- g.probs!=0
|
||||
g.breaks.clean <- g.breaks[nz.probs.mask]
|
||||
g.probs.clean <- g.probs[nz.probs.mask]
|
||||
plot(log(g.breaks.clean), log(g.probs.clean))
|
||||
g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean))
|
||||
summary(g.fit)
|
||||
alpha.LM <- coef(g.fit)[2]
|
||||
lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3, lwd=3)
|
||||
################# Max-Log-Likelihood #################
|
||||
n <- length(g.breaks.clean)
|
||||
kmin <- g.breaks.clean[1]
|
||||
alpha.ML <- 1 + n/sum(log(g.breaks.clean/kmin))
|
||||
alpha.ML
|
||||
lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4, lwd=3)
|
||||
plot(log(g.breaks.clean), log(g.probs.clean))
|
||||
g.breaks.clean <- g.breaks[nz.probs.mask]
|
||||
g.probs.clean <- g.probs[nz.probs.mask]
|
||||
plot(log(g.breaks.clean), log(g.probs.clean))
|
||||
## Set Working Directory to file directory - RStudio approach
|
||||
setwd(dirname(rstudioapi::getActiveDocumentContext()$path))
|
||||
#### Part A: GenBank sequences and a multiple fasta file
|
||||
if (!require("ape")) install.packages("ape")
|
||||
library(ape) # needed for read.GenBank
|
||||
# fetch the mtDNA sequences
|
||||
mtDNA.MultiSeqs.list<-read.GenBank(c("AF011222","AF254446","X90314","AF089820",
|
||||
"AF176766","AF451972", "AY079510",
|
||||
"AF050738","AF176722","AF315498",
|
||||
"AF176731","AF451964"), as.character=TRUE)
|
||||
# look at species names
|
||||
mtDNA.Species<-attr(mtDNA.MultiSeqs.list,"species")
|
||||
# use species as name instead of genbank id
|
||||
names(mtDNA.MultiSeqs.list)<-mtDNA.Species
|
||||
names(mtDNA.MultiSeqs.list)
|
||||
# need to fix some names
|
||||
names(mtDNA.MultiSeqs.list)[1] <- paste("German_Neanderthal",sep="")
|
||||
names(mtDNA.MultiSeqs.list)[2] <- paste("Russian_Neanderthal",sep="")
|
||||
names(mtDNA.MultiSeqs.list)[3] <- paste("Human")
|
||||
names(mtDNA.MultiSeqs.list)[6] <- paste("Puti_Orangutan",sep="")
|
||||
names(mtDNA.MultiSeqs.list)[12] <- paste("Jari_Orangutan",sep="")
|
||||
names(mtDNA.MultiSeqs.list)
|
||||
# look at one of the sequences using $
|
||||
mtDNA.MultiSeqs.list$Human
|
||||
length(mtDNA.MultiSeqs.list$Human)
|
||||
## Convert to Biostrings object for the sequences
|
||||
if (!require("BiocManager")) install.packages("BiocManager")
|
||||
library(BiocManager)
|
||||
if (!require("Biostrings")) BiocManager::install("Biostrings")
|
||||
library(Biostrings)
|
||||
# loop through the list to create vector of strings for Biostrings input
|
||||
Names.vec <- c() # initialize speices names string vector
|
||||
Seqs.vec <- c() # initialize sequence string vector
|
||||
for (mtDNA.name in names(mtDNA.MultiSeqs.list))
|
||||
{
|
||||
Names.vec <- c(Names.vec,mtDNA.name) # concatenate vector
|
||||
Seqs.vec <-c(Seqs.vec,paste(mtDNA.MultiSeqs.list[[mtDNA.name]],collapse=""))
|
||||
}
|
||||
mtDNA.multSeqs.bstr <- DNAStringSet(Seqs.vec) # convert to Biostring
|
||||
# name the Biostring sequences and compute stats
|
||||
names(mtDNA.multSeqs.bstr) <- Names.vec # count nucs and sequence lengths
|
||||
num.nts <- alphabetFrequency(mtDNA.multSeqs.bstr)[,1:4]
|
||||
mtDNA.lengths <- rowSums(num.nts)
|
||||
proportion.nts <- num.nts/mtDNA.lengths
|
||||
num.nts
|
||||
names(mtDA.multSeqs.bstr)
|
||||
names(mtDNA.multSeqs.bstr)
|
||||
mtDNA.multSeqs.bstr
|
||||
mtDNA.multSeqs.bstr
|
||||
mtDNA.multSeqs.bstr
|
||||
mtDNA.multSeqs.bstr --help
|
||||
print(mtDNA.multSeqs.bstr)
|
||||
print(mtDNA.multSeqs.bstr, -n40)
|
||||
print(mtDNA.multSeqs.bstr, -n 40)
|
||||
print(mtDNA.multSeqs.bstr, n=20)
|
||||
class(mtDNA.multSeqs.bstr)
|
||||
print(mtDNA.multSeqs.bstr)
|
||||
?print()
|
||||
?print
|
||||
table(mtDNA.multSeqs.bstr)
|
||||
mtDNA.multSeqs.bstr
|
||||
mtDNA.multSeqs.bstr$width
|
||||
mtDNA.multSeqs.bstr[,1]$width
|
||||
mtDNA.multSeqs.bstr[1,]$width
|
||||
mtDNA.multSeqs.bstr[1]$width
|
||||
mtDNA.multSeqs.bstr[1]
|
||||
mtDNA.multSeqs.bstr[1]$seq
|
||||
mtDNA.multSeqs.bstr[1]$width
|
||||
mtDNA.multSeqs.bstr[1]$names
|
||||
mtDNA.multSeqs.bstr$names
|
||||
# name the Biostring sequences and compute stats
|
||||
names(mtDNA.multSeqs.bstr) <- Names.vec # count nucs and sequence lengths
|
||||
mtDNA.multSeqs.bstr$names
|
||||
mtDNA.multSeqs.bstr$Names
|
||||
mtDNA.lengths
|
||||
table(mtDNA.lengths, Names.vec)
|
||||
cbind(mtDNA.lengths, Names.vec)
|
||||
sort(cbind(mtDNA.lengths, Names.vec))
|
||||
cbind(mtDNA.lengths, Names.vec)
|
||||
cbind(mtDNA.lengths, Names.vec)
|
||||
table(cbind(mtDNA.lengths, Names.vec))
|
||||
rbind(cbind(mtDNA.lengths, Names.vec))
|
||||
sort(rbind(cbind(mtDNA.lengths, Names.vec)))
|
||||
rbind(mtDNA.lengths, Names.vec)
|
||||
cbind(mtDNA.lengths, Names.vec)
|
||||
max(cbind(mtDNA.lengths, Names.vec))
|
||||
max(cbind(mtDNA.lengths, Names.vec))[,1]
|
||||
max(cbind(mtDNA.lengths, Names.vec)[,1])
|
||||
max(cbind(mtDNA.lengths, Names.vec)[1,])
|
||||
max(cbind(mtDNA.lengths, Names.vec)[,1])
|
||||
max(cbind(mtDNA.lengths, Names.vec))
|
||||
cbind(mtDNA.lengths, Names.vec)
|
||||
nlengthnames <- cbind(mtDNA.lengths, Names.vec)
|
||||
max(nlengthnames[,1])
|
||||
nlengthnames <- cbind(mtDNA.lengths, Names.vec)
|
||||
nlengthnames[which.max(nlengthnames[,1])]
|
||||
idx <- which.max(nlengthnames[,1])
|
||||
idx
|
||||
nlengthnames[idx, idx]
|
||||
nlengthnames[idx]
|
||||
nlengthnames
|
||||
nlengthnames[idx,]
|
||||
proportion.nts <- num.nts/mtDNA.lengths
|
||||
proportion.nts
|
||||
@ -48,7 +48,7 @@ mtDNA.multSeqs.bstr <- DNAStringSet(Seqs.vec) # convert to Biostring
|
||||
|
||||
# name the Biostring sequences and compute stats
|
||||
names(mtDNA.multSeqs.bstr) <- Names.vec # count nucs and sequence lengths
|
||||
# num.nts <- alphabetFrequency(mtDNA.multSeqs.bstr)[,1:4]
|
||||
num.nts <- alphabetFrequency(mtDNA.multSeqs.bstr)[,1:4]
|
||||
mtDNA.lengths <- rowSums(num.nts)
|
||||
proportion.nts <- num.nts/mtDNA.lengths
|
||||
|
||||
@ -56,3 +56,40 @@ proportion.nts <- num.nts/mtDNA.lengths
|
||||
nlengthnames <- cbind(mtDNA.lengths, Names.vec)
|
||||
idx <- which.max(nlengthnames[,1])
|
||||
nlengthnames[idx,]
|
||||
|
||||
|
||||
#### Part B: Multiple Sequence Alignment
|
||||
if (!require("BiocManager")) install.packages("BiocManager")
|
||||
library(BiocManager)
|
||||
if (!require("msa")) BiocManager::install("msa")
|
||||
library(msa)
|
||||
mtDNA.msa <- msa(mtDNA.multSeqs.bstr,method="ClustalOmega")
|
||||
msaPrettyPrint(mtDNA.msa, file="mtDNA.pdf", output="pdf", showNames="left",
|
||||
showLogo="none", askForOverwrite=FALSE, verbose=TRUE )
|
||||
## loop to make results data frame
|
||||
num_seqs <- length(Names.vec)
|
||||
# initialize data frame
|
||||
align.stats.df <- data.frame(species=rep(NA,num_seqs), seqlen=rep(0,num_seqs),
|
||||
numgaps=rep(0,num_seqs), nt_a=rep(NA,num_seqs),
|
||||
nt_c=rep(NA,num_seqs), nt_g=rep(NA,num_seqs),
|
||||
nt_t=rep(NA,num_seqs))
|
||||
# DNAbin type required for dist.dna and helpful for other calculations
|
||||
mtDNA.msa.DNAbin <- as.DNAbin(mtDNA.msa)
|
||||
for (i in 1:num_seqs){
|
||||
seq_name <- Names.vec[i]
|
||||
seq.vec <- as.character(mtDNA.msa.DNAbin[i,])
|
||||
num.gaps <- sum(seq.vec=="-")
|
||||
prop.nt.i <- proportion.nts[i,]
|
||||
align.stats.df[i,] <- c(seq_name, mtDNA.lengths[i], num.gaps,
|
||||
round(prop.nt.i[1],digits=2), round(prop.nt.i[2],digits=2),
|
||||
round(prop.nt.i[3],digits=2), round(prop.nt.i[4],digits=2))
|
||||
}
|
||||
|
||||
# write to file
|
||||
write.table(align.stats.df,file="alignstats.tab",sep = "\t", row.names=FALSE, quote=FALSE)
|
||||
|
||||
# you can use $ operator to grab a named column from a data.frame
|
||||
# similar to grabbing a named variable from a list
|
||||
align.stats.df$species
|
||||
align.stats.df$nt_a # strings by default
|
||||
as.numeric(align.stats.df$nt_a) # convert to numeric
|
||||
|
||||
Binary file not shown.
13
alignstats.tab
Normal file
13
alignstats.tab
Normal file
@ -0,0 +1,13 @@
|
||||
species seqlen numgaps nt_a nt_c nt_g nt_t
|
||||
German_Neanderthal 379 81 0.31 0.32 0.13 0.24
|
||||
Russian_Neanderthal 345 76 0.33 0.34 0.11 0.22
|
||||
Human 360 76 0.33 0.34 0.11 0.22
|
||||
Gorilla_beringei_beringei 374 96 0.29 0.36 0.13 0.23
|
||||
Pan_troglodytes_troglodytes 340 105 0.32 0.36 0.1 0.22
|
||||
Puti_Orangutan 354 90 0.31 0.4 0.1 0.19
|
||||
Gorilla_gorilla_gorilla 367 71 0.3 0.35 0.14 0.21
|
||||
Gorilla_beringei_graueri 374 105 0.28 0.35 0.14 0.23
|
||||
Pan_troglodytes_schweinfurthii 339 110 0.34 0.35 0.09 0.22
|
||||
Pan_troglodytes_ellioti 411 111 0.33 0.36 0.1 0.21
|
||||
Pan_troglodytes_verus 339 39 0.34 0.37 0.1 0.2
|
||||
Jari_Orangutan 345 111 0.32 0.39 0.1 0.19
|
||||
14
mtDNA.aux
Normal file
14
mtDNA.aux
Normal file
@ -0,0 +1,14 @@
|
||||
\relax
|
||||
\savedseqlength{1}{1}{369}
|
||||
\savedseqlength{1}{2}{374}
|
||||
\savedseqlength{1}{3}{374}
|
||||
\savedseqlength{1}{4}{354}
|
||||
\savedseqlength{1}{5}{345}
|
||||
\savedseqlength{1}{6}{360}
|
||||
\savedseqlength{1}{7}{379}
|
||||
\savedseqlength{1}{8}{345}
|
||||
\savedseqlength{1}{9}{340}
|
||||
\savedseqlength{1}{10}{339}
|
||||
\savedseqlength{1}{11}{411}
|
||||
\savedseqlength{1}{12}{339}
|
||||
\gdef \@abspage@last{2}
|
||||
308
mtDNA.log
Normal file
308
mtDNA.log
Normal file
@ -0,0 +1,308 @@
|
||||
This is pdfTeX, Version 3.141592653-2.6-1.40.24 (TeX Live 2022/Arch Linux) (preloaded format=pdflatex 2022.11.8) 21 NOV 2022 16:54
|
||||
entering extended mode
|
||||
restricted \write18 enabled.
|
||||
%&-line parsing enabled.
|
||||
**mtDNA.tex
|
||||
(./mtDNA.tex
|
||||
LaTeX2e <2021-11-15> patch level 1
|
||||
L3 programming layer <2022-04-10>
|
||||
(/usr/share/texmf-dist/tex/latex/base/article.cls
|
||||
Document Class: article 2021/10/04 v1.4n Standard LaTeX document class
|
||||
(/usr/share/texmf-dist/tex/latex/base/size10.clo
|
||||
File: size10.clo 2021/10/04 v1.4n Standard LaTeX file (size option)
|
||||
)
|
||||
\c@part=\count185
|
||||
\c@section=\count186
|
||||
\c@subsection=\count187
|
||||
\c@subsubsection=\count188
|
||||
\c@paragraph=\count189
|
||||
\c@subparagraph=\count190
|
||||
\c@figure=\count191
|
||||
\c@table=\count192
|
||||
\abovecaptionskip=\skip47
|
||||
\belowcaptionskip=\skip48
|
||||
\bibindent=\dimen138
|
||||
)
|
||||
(/usr/lib/R/library/msa/tex/texshade.sty
|
||||
Package: texshade 2021/04/01 LaTeX TeXshade (v1.26)
|
||||
|
||||
Package `texshade', Version 1.26 of 2021/04/01.
|
||||
(/usr/share/texmf-dist/tex/latex/graphics/color.sty
|
||||
Package: color 2021/12/07 v1.3c Standard LaTeX Color (DPC)
|
||||
|
||||
(/usr/share/texmf-dist/tex/latex/graphics-cfg/color.cfg
|
||||
File: color.cfg 2016/01/02 v1.6 sample color configuration
|
||||
)
|
||||
Package color Info: Driver file: dvips.def on input line 149.
|
||||
|
||||
(/usr/share/texmf-dist/tex/latex/graphics-def/dvips.def
|
||||
File: dvips.def 2017/06/20 v3.1d Graphics/color driver for dvips
|
||||
)
|
||||
(/usr/share/texmf-dist/tex/latex/graphics/dvipsnam.def
|
||||
File: dvipsnam.def 2016/06/17 v3.0m Driver-dependent file (DPC,SPQR)
|
||||
))
|
||||
(/usr/share/texmf-dist/tex/latex/graphics/graphics.sty
|
||||
Package: graphics 2021/03/04 v1.4d Standard LaTeX Graphics (DPC,SPQR)
|
||||
|
||||
(/usr/share/texmf-dist/tex/latex/graphics/trig.sty
|
||||
Package: trig 2021/08/11 v1.11 sin cos tan (DPC)
|
||||
)
|
||||
(/usr/share/texmf-dist/tex/latex/graphics-cfg/graphics.cfg
|
||||
File: graphics.cfg 2016/06/04 v1.11 sample graphics configuration
|
||||
)
|
||||
Package graphics Info: Driver file: pdftex.def on input line 107.
|
||||
|
||||
(/usr/share/texmf-dist/tex/latex/graphics-def/pdftex.def
|
||||
File: pdftex.def 2020/10/05 v1.2a Graphics/color driver for pdftex
|
||||
))
|
||||
\structurefile=\read2
|
||||
\featurefile=\write3
|
||||
\alignfile=\read3
|
||||
\sublogofile=\read4
|
||||
\exp@rtfile=\write4
|
||||
\exp@rt@chimerafile=\write5
|
||||
|
||||
(/usr/share/texmf-dist/tex/latex/amsfonts/amssymb.sty
|
||||
Package: amssymb 2013/01/14 v3.01 AMS font symbols
|
||||
|
||||
(/usr/share/texmf-dist/tex/latex/amsfonts/amsfonts.sty
|
||||
Package: amsfonts 2013/01/14 v3.01 Basic AMSFonts support
|
||||
\@emptytoks=\toks16
|
||||
\symAMSa=\mathgroup4
|
||||
\symAMSb=\mathgroup5
|
||||
LaTeX Font Info: Redeclaring math symbol \hbar on input line 98.
|
||||
LaTeX Font Info: Overwriting math alphabet `\mathfrak' in version `bold'
|
||||
(Font) U/euf/m/n --> U/euf/b/n on input line 106.
|
||||
))
|
||||
\symalphahelix=\mathgroup6
|
||||
\loopcount=\count193
|
||||
\innerloopcount=\count194
|
||||
\outerloopcount=\count195
|
||||
\seq@count=\count196
|
||||
\killseq@count=\count197
|
||||
\seq@percent=\count198
|
||||
\res@count=\count199
|
||||
\seq@pointer=\count266
|
||||
\pos@count=\count267
|
||||
\res@perline=\count268
|
||||
\end@count=\count269
|
||||
\cons@count=\count270
|
||||
\total@count=\count271
|
||||
\temp@count=\count272
|
||||
\triple@count=\count273
|
||||
\temp@@count=\count274
|
||||
\pos@sum=\count275
|
||||
\box@width=\skip49
|
||||
\name@width=\skip50
|
||||
\box@depth=\skip51
|
||||
\width@tmp=\skip52
|
||||
\box@height=\skip53
|
||||
\number@width=\skip54
|
||||
\line@stretch=\skip55
|
||||
\center@fill=\skip56
|
||||
\arrow@width=\skip57
|
||||
\arrow@height=\skip58
|
||||
\rule@thick=\skip59
|
||||
\arrow@thick=\skip60
|
||||
\logo@height=\skip61
|
||||
\equal@width=\skip62
|
||||
\equal@tmp=\skip63
|
||||
\equal@height=\skip64
|
||||
\temp@@length=\skip65
|
||||
\vspace@legend=\skip66
|
||||
\hspace@legend=\skip67
|
||||
\bar@length=\skip68
|
||||
Package color Info: Redefining color LightGray on input line 1716.
|
||||
Package color Info: Redefining color LightLightGray on input line 1817.
|
||||
Package color Info: Redefining color LightLightLightGray on input line 1919.
|
||||
)
|
||||
(/usr/share/texmf-dist/tex/latex/l3backend/l3backend-pdftex.def
|
||||
File: l3backend-pdftex.def 2022-04-14 L3 backend support: PDF output (pdfTeX)
|
||||
\l__color_backend_stack_int=\count276
|
||||
\l__pdf_internal_box=\box50
|
||||
)
|
||||
No file mtDNA.aux.
|
||||
\openout1 = `mtDNA.aux'.
|
||||
|
||||
LaTeX Font Info: Checking defaults for OML/cmm/m/it on input line 24.
|
||||
LaTeX Font Info: ... okay on input line 24.
|
||||
LaTeX Font Info: Checking defaults for OMS/cmsy/m/n on input line 24.
|
||||
LaTeX Font Info: ... okay on input line 24.
|
||||
LaTeX Font Info: Checking defaults for OT1/cmr/m/n on input line 24.
|
||||
LaTeX Font Info: ... okay on input line 24.
|
||||
LaTeX Font Info: Checking defaults for T1/cmr/m/n on input line 24.
|
||||
LaTeX Font Info: ... okay on input line 24.
|
||||
LaTeX Font Info: Checking defaults for TS1/cmr/m/n on input line 24.
|
||||
LaTeX Font Info: ... okay on input line 24.
|
||||
LaTeX Font Info: Checking defaults for OMX/cmex/m/n on input line 24.
|
||||
LaTeX Font Info: ... okay on input line 24.
|
||||
LaTeX Font Info: Checking defaults for U/cmr/m/n on input line 24.
|
||||
LaTeX Font Info: ... okay on input line 24.
|
||||
(/usr/share/texmf-dist/tex/context/base/mkii/supp-pdf.mkii
|
||||
[Loading MPS to PDF converter (version 2006.09.02).]
|
||||
\scratchcounter=\count277
|
||||
\scratchdimen=\dimen139
|
||||
\scratchbox=\box51
|
||||
\nofMPsegments=\count278
|
||||
\nofMParguments=\count279
|
||||
\everyMPshowfont=\toks17
|
||||
\MPscratchCnt=\count280
|
||||
\MPscratchDim=\dimen140
|
||||
\MPnumerator=\count281
|
||||
\makeMPintoPDFobject=\count282
|
||||
\everyMPtoPDFconversion=\toks18
|
||||
) (/usr/share/texmf-dist/tex/latex/epstopdf-pkg/epstopdf-base.sty
|
||||
Package: epstopdf-base 2020-01-24 v2.11 Base part for package epstopdf
|
||||
Package epstopdf-base Info: Redefining graphics rule for `.eps' on input line 4
|
||||
85.
|
||||
|
||||
(/usr/share/texmf-dist/tex/latex/latexconfig/epstopdf-sys.cfg
|
||||
File: epstopdf-sys.cfg 2010/07/13 v1.3 Configuration of (r)epstopdf for TeX Liv
|
||||
e
|
||||
))
|
||||
(/tmp/Rtmp9tSm8e/seq57d10064df.fasta:
|
||||
Runaway argument?
|
||||
! Paragraph ended before \inf@@get was complete.
|
||||
<to be read again>
|
||||
\par
|
||||
l.25 ...hade}{/tmp/Rtmp9tSm8e/seq57d10064df.fasta}
|
||||
|
||||
I suspect you've forgotten a `}', causing me to apply this
|
||||
control sequence to too much text. How can we recover?
|
||||
My plan is to forget the whole thing and hope for the best.
|
||||
|
||||
! Misplaced alignment tab character &.
|
||||
\msfline ->\par &
|
||||
& & & @
|
||||
l.25 ...hade}{/tmp/Rtmp9tSm8e/seq57d10064df.fasta}
|
||||
|
||||
I can't figure out why you would want to use a tab mark
|
||||
here. If you just want an ampersand, the remedy is
|
||||
simple: Just type `I\&' now. But if some right brace
|
||||
up above has ended a previous alignment prematurely,
|
||||
you're probably due for more error messages, and you
|
||||
might try typing `S' now just to see what is salvageable.
|
||||
|
||||
! Misplaced alignment tab character &.
|
||||
\msfline ->\par & &
|
||||
& & @
|
||||
l.25 ...hade}{/tmp/Rtmp9tSm8e/seq57d10064df.fasta}
|
||||
|
||||
I can't figure out why you would want to use a tab mark
|
||||
here. If you just want an ampersand, the remedy is
|
||||
simple: Just type `I\&' now. But if some right brace
|
||||
up above has ended a previous alignment prematurely,
|
||||
you're probably due for more error messages, and you
|
||||
might try typing `S' now just to see what is salvageable.
|
||||
|
||||
! Misplaced alignment tab character &.
|
||||
\msfline ->\par & & &
|
||||
& @
|
||||
l.25 ...hade}{/tmp/Rtmp9tSm8e/seq57d10064df.fasta}
|
||||
|
||||
I can't figure out why you would want to use a tab mark
|
||||
here. If you just want an ampersand, the remedy is
|
||||
simple: Just type `I\&' now. But if some right brace
|
||||
up above has ended a previous alignment prematurely,
|
||||
you're probably due for more error messages, and you
|
||||
might try typing `S' now just to see what is salvageable.
|
||||
|
||||
! Misplaced alignment tab character &.
|
||||
\msfline ->\par & & & &
|
||||
@
|
||||
l.25 ...hade}{/tmp/Rtmp9tSm8e/seq57d10064df.fasta}
|
||||
|
||||
I can't figure out why you would want to use a tab mark
|
||||
here. If you just want an ampersand, the remedy is
|
||||
simple: Just type `I\&' now. But if some right brace
|
||||
up above has ended a previous alignment prematurely,
|
||||
you're probably due for more error messages, and you
|
||||
might try typing `S' now just to see what is salvageable.
|
||||
|
||||
Runaway argument?
|
||||
! Paragraph ended before \check@letter was complete.
|
||||
<to be read again>
|
||||
\par
|
||||
l.25 ...hade}{/tmp/Rtmp9tSm8e/seq57d10064df.fasta}
|
||||
|
||||
I suspect you've forgotten a `}', causing me to apply this
|
||||
control sequence to too much text. How can we recover?
|
||||
My plan is to forget the whole thing and hope for the best.
|
||||
|
||||
Runaway argument?
|
||||
! Paragraph ended before \firstchar@get was complete.
|
||||
<to be read again>
|
||||
\par
|
||||
l.25 ...hade}{/tmp/Rtmp9tSm8e/seq57d10064df.fasta}
|
||||
|
||||
I suspect you've forgotten a `}', causing me to apply this
|
||||
control sequence to too much text. How can we recover?
|
||||
My plan is to forget the whole thing and hope for the best.
|
||||
|
||||
Runaway argument?
|
||||
! Paragraph ended before \firstchar@get was complete.
|
||||
<to be read again>
|
||||
\par
|
||||
l.47 \end{texshade}
|
||||
|
||||
I suspect you've forgotten a `}', causing me to apply this
|
||||
control sequence to too much text. How can we recover?
|
||||
My plan is to forget the whole thing and hope for the best.
|
||||
|
||||
Runaway argument?
|
||||
! Paragraph ended before \res@get was complete.
|
||||
<to be read again>
|
||||
\par
|
||||
l.47 \end{texshade}
|
||||
|
||||
I suspect you've forgotten a `}', causing me to apply this
|
||||
control sequence to too much text. How can we recover?
|
||||
My plan is to forget the whole thing and hope for the best.
|
||||
|
||||
! Misplaced alignment tab character &.
|
||||
\seq@line ->\par &
|
||||
@
|
||||
l.47 \end{texshade}
|
||||
|
||||
I can't figure out why you would want to use a tab mark
|
||||
here. If you just want an ampersand, the remedy is
|
||||
simple: Just type `I\&' now. But if some right brace
|
||||
up above has ended a previous alignment prematurely,
|
||||
you're probably due for more error messages, and you
|
||||
might try typing `S' now just to see what is salvageable.
|
||||
|
||||
. . . . . [1
|
||||
Non-PDF special ignored!
|
||||
<special> papersize=794.96999pt,614.295pt
|
||||
|
||||
{/var/lib/texmf/fonts/map/pdftex/updmap/pdftex.map}] )
|
||||
LaTeX Font Info: Trying to load font information for U+msa on input line 47.
|
||||
|
||||
|
||||
(/usr/share/texmf-dist/tex/latex/amsfonts/umsa.fd
|
||||
File: umsa.fd 2013/01/14 v3.01 AMS symbols A
|
||||
)
|
||||
LaTeX Font Info: Trying to load font information for U+msb on input line 47.
|
||||
|
||||
|
||||
(/usr/share/texmf-dist/tex/latex/amsfonts/umsb.fd
|
||||
File: umsb.fd 2013/01/14 v3.01 AMS symbols B
|
||||
) [2] (./mtDNA.aux) )
|
||||
Here is how much of TeX's memory you used:
|
||||
8179 strings out of 478238
|
||||
97095 string characters out of 5850456
|
||||
1334999 words of memory out of 5000000
|
||||
26433 multiletter control sequences out of 15000+600000
|
||||
471599 words of font info for 39 fonts, out of 8000000 for 9000
|
||||
1141 hyphenation exceptions out of 8191
|
||||
541i,6n,65p,182b,4214s stack positions out of 5000i,500n,10000p,200000b,80000s
|
||||
</usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmr1
|
||||
0.pfb></usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmsy10.pfb></usr/sh
|
||||
are/texmf-dist/fonts/type1/public/amsfonts/cm/cmtt10.pfb>
|
||||
Output written on mtDNA.pdf (2 pages, 86917 bytes).
|
||||
PDF statistics:
|
||||
26 PDF objects out of 1000 (max. 8388607)
|
||||
15 compressed objects within 1 object stream
|
||||
0 named destinations out of 1000 (max. 500000)
|
||||
1 words of extra memory for PDF output out of 10000 (max. 10000000)
|
||||
|
||||
48
mtDNA.tex
Normal file
48
mtDNA.tex
Normal file
@ -0,0 +1,48 @@
|
||||
\documentclass[10pt]{article}
|
||||
|
||||
\usepackage{texshade}
|
||||
|
||||
\headheight=0pt
|
||||
\headsep=0pt
|
||||
\hoffset=0pt
|
||||
\voffset=0pt
|
||||
\paperwidth=11in
|
||||
\paperheight=8.5in
|
||||
\ifx\pdfoutput\undefined
|
||||
\relax
|
||||
\else
|
||||
\pdfpagewidth=\paperwidth
|
||||
\pdfpageheight=\paperheight
|
||||
\fi
|
||||
\oddsidemargin=-0.9in
|
||||
\topmargin=-0.7in
|
||||
\textwidth=10.8in
|
||||
\textheight=7.9in
|
||||
|
||||
\pagestyle{empty}
|
||||
|
||||
\begin{document}
|
||||
\begin{texshade}{/tmp/Rtmp9tSm8e/seq57d10064df.fasta}
|
||||
\seqtype{N}
|
||||
\shadingmode{identical}
|
||||
\threshold{50}
|
||||
\showconsensus[ColdHot]{bottom}
|
||||
\shadingcolors{blues}
|
||||
\hidelogoscale
|
||||
\shownames{left}
|
||||
\nameseq{1}{Gorilla gorilla gorilla}
|
||||
\nameseq{2}{Gorilla beringei beringei}
|
||||
\nameseq{3}{Gorilla beringei graueri}
|
||||
\nameseq{4}{Puti Orangutan}
|
||||
\nameseq{5}{Jari Orangutan}
|
||||
\nameseq{6}{Human}
|
||||
\nameseq{7}{German Neanderthal}
|
||||
\nameseq{8}{Russian Neanderthal}
|
||||
\nameseq{9}{Pan troglodytes troglodytes}
|
||||
\nameseq{10}{Pan troglodytes schweinfurthii}
|
||||
\nameseq{11}{Pan troglodytes ellioti}
|
||||
\nameseq{12}{Pan troglodytes verus}
|
||||
\shownumbering{right}
|
||||
\showlegend
|
||||
\end{texshade}
|
||||
\end{document}
|
||||
Loading…
x
Reference in New Issue
Block a user