# Lab 1 for the University of Tulsa's CS-6643 Bioinformatics Course # Intro to R, online bioinformatics resources, nucleotide frequency statistics # Professor: Dr. McKinney, Fall 2022 # Noah L. Schrick - 1492657 #### Part A: Seq Function ## a AAvec <- seq(from = 1, to = 33, by = 2) ## b ABvec <- seq(from = 7, to = 40, length.out = 15) ## c my.dna <- sample(c("A", "C", "G", "T"), size = 20, replace = T) ## d my.dna.A <- length(which(my.dna == "A")) ## e my.dna.table <- table(my.dna) my.dna.table.df <- as.data.frame(my.dna.table) cols <- rainbow(nrow(my.dna.table)) my.dna.table.df$percent <- round(100*my.dna.table.df$Freq/sum(my.dna.table.df$Freq), digits = 1) my.dna.table.df$label <- paste(my.dna.table.df$my.dna, " (", my.dna.table.df$percent, "%)", sep = "") pie(my.dna.table.df$Freq, labels = my.dna.table.df$label, col = cols, main = "Pie Chart Representation of Random ACTG Sample") bp <- barplot(as.matrix(my.dna.table), beside = TRUE, xlab = "Letter", ylab = "Frequency", ylim = c(-1, max(as.numeric(my.dna.table))+2), main = "Bar Plot Representation of Random ACTG Sample", col = cols, legend = TRUE) text(x = bp, y = my.dna.table + 0.5, labels = as.numeric(my.dna.table)) text(x = bp, y = -0.5, labels = names(my.dna.table)) ## f my.dna2 <- sample(c("A", "C", "G", "T"), size = 20, replace = T, prob = c(0.1, 0.4, 0.4, 0.1)) my.dna2.table <- table(my.dna2) my.dna2.table #### Part B: NCBI (no supporting R code for this part) #### Part C: Reading fasta files, nucelotide and dinucleotide frequencies ## Pre-cursor: Load associated supportive libraries ## 1 ## 2 ## 3 #### Part D: GC Content ## 1 #### Part E: Coronavirus ## 1