Figure renaming

This commit is contained in:
Noah L. Schrick 2023-12-06 15:48:33 -06:00
parent 966af63b45
commit d20c9ea6e4
48 changed files with 4845 additions and 0 deletions

View File

@ -0,0 +1,382 @@
@misc{noauthor_parmetis_nodate,
title = {ParMETIS - Parallel Graph Partitioning and Fill-reducing Matrix Ordering},
author = {Karypis Lab},
note = {http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview},
}
@ARTICLE{7087377,
author={Kaynar, Kerem and Sivrikaya, Fikret},
journal={IEEE Transactions on Dependable and Secure Computing},
title={Distributed Attack Graph Generation},
year={2016},
volume={13},
number={5},
pages={519-532},
doi={10.1109/TDSC.2015.2423682}
}
@misc{noauthor_boost_nodate,
title = {The Boost Graph Library, vers. 1.75.0},
author = {Siek, Jeremy and Lee, Lie-Quan and Lumsdaine, Andrew},
note = {https://www.boost.org/doc/libs/1$\_$75$\_$0/libs/graph/doc/index.html},
}
@article{ainsworth_graph_2016,
title = {Graph prefetching using data structure knowledge},
volume = {01-03-June},
issn = {9781450343619},
doi = {10.1145/2925426.2926254},
abstract = {Searches on large graphs are heavily memory latency bound, as a result of many high latency DRAM accesses. Due to the highly irregular nature of the access patterns involved, caches and prefetchers, both hardware and software, perform poorly on graph workloads. This leads to CPU stalling for the majority of the time. However, in many cases the data access pattern is well defined and predictable in advance, many falling into a small set of simple patterns. Although existing implicit prefetchers cannot bring significant benefit, a prefetcher armed with knowledge of the data structures and access patterns could accurately anticipate applications' traversals to bring in the appropriate data. This paper presents a design of an explicitly configured prefetcher to improve performance for breadth-first searches and sequential iteration on the efficient and commonly-used compressed sparse row graph format. By snooping L1 cache accesses from the core and reacting to data returned from its own prefetches, the prefetcher can schedule timely loads of data in advance of the application needing it. For a range of applications and graph sizes, our prefetcher achieves average speedups of 2.3×, and up to 3.3×, with little impact on memory bandwidth requirements.},
journal = {Proceedings of the International Conference on Supercomputing},
author = {Ainsworth, Sam and Jones, Timothy M.},
year = {2016},
keywords = {Graphs, Prefetching},
file = {Graph Prefetching Using Data Structure Knowledge:/home/noah/Zotero/storage/UUVEP42L/Graph Prefetching Using Data Structure Knowledge.pdf:application/pdf},
}
@mastersthesis{cook_rage_2018,
title = {{RAGE}: {The} {Rage} {Attack} {Graph} {Engine}},
author = {Cook, Kyle},
school = {The {University} of {Tulsa}},
year = {2018},
file = {Kyle Cook Thesis:/home/noah/Zotero/storage/2SR28HM2/Kyle Cook Thesis.pdf:application/pdf},
}
@article{cook_scalable_2016,
title = {Scalable attack graph generation},
issn = {9781450337526},
doi = {10.1145/2897795.2897821},
abstract = {Attack graphs are a powerful modeling technique with which to explore the attack surface of a system. However, they can be difficult to generate due to the exponential growth of the state space, often times making exhaustive search im- practical. This paper discusses an approach for generating large attack graphs with an emphasis on scalable generation over a distributed system. First, a serial algorithm is presented, highlighting bottlenecks and opportunities to exploit inherent concurrency in the generation process. Then a strategy to parallelize this process is presented. Finally, we discuss plans for future work to implement the parallel algorithm using a hybrid distributed/shared memory programming model on a heterogeneous compute node cluster.},
journal = {Proceedings of the 11th Annual Cyber and Information Security Research Conference, CISRC 2016},
author = {Cook, Kyle and Shaw, Thomas and Hale, John and Hawrylak, Peter},
year = {2016},
keywords = {Attack graphs, Attack modeling, Vulnerability analysis},
file = {Attachment:/home/noah/Zotero/storage/2YNSLTQH/Scalable Attack Graph Generation:application/pdf},
}
@article{dai_fpgp_2016,
title = {{FPGP}: {Graph} processing framework on {FPGA}: {A} case study of breadth-first search},
issn = {9781450338561},
doi = {10.1145/2847263.2847339},
abstract = {Large-scale graph processing is gaining increasing attentions in many domains. Meanwhile, FPGA provides a power-efficient and highly parallel platform for many applications, and has been applied to custom computing in many domains. In this paper, we describe FPGP (FPGA Graph Processing), a streamlined vertex-centric graph processing framework on FPGA, based on the interval-shard structure. FPGP is adaptable to different graph algorithms and users do not need to change the whole implementation on the FPGA. In our implementation, an on-chip parallel graph processor is proposed to both maximize the off-chip bandwidth of graph data and fully utilize the parallelism of graph processing. Meanwhile, we analyze the performance of FPGP and show the scalability of FPGP when the bandwidth of data path increases. FPGP is more power-efficient than single machine systems and scalable to larger graphs compared with other FPGA-based graph systems.},
journal = {FPGA 2016 - Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays},
author = {Dai, Guohao and Chi, Yuze and Wang, Yu and Yang, Huazhong},
year = {2016},
keywords = {FPGA framework, Large scale graph processing},
pages = {105--110},
file = {FPGP\: Graph Processing Framework on FPGA:/home/noah/Zotero/storage/QJUQ3SDZ/FPGP Graph Processing Framework on FPGA.pdf:application/pdf},
}
@misc{j_hale_compliance_nodate,
title = {Compliance {Method} for a {Cyber}-{Physical} {System}},
author = {{J. Hale} and Hawrylak, P. and Papa, M.},
note = {U.S. Patent Number 9,471,789, Oct. 18, 2016.},
number = {9471789},
file = {Complaince_Graph_US_Patent_9471789:/home/noah/Zotero/storage/55BZN4U7/Complaince_Graph_US_Patent_9471789.pdf:application/pdf},
}
@article{li_combining_2019,
title = {Combining {OpenCL} and {MPI} to support heterogeneous computing on a cluster},
issn = {9781450372275},
doi = {10.1145/3332186.3333059},
abstract = {This paper presents an implementation of a heterogeneous programming model which combines Open Computing Language (OpenCL) and Message Passing Interface (MPI). The model is applied to solving a Markov decision process (MDP) with value iteration method. The performance test is conducted on a high performance computing cluster. At peak performance, the model is able to achieve a 57X speedup over a serial implementation. For an extremely large input MDP, which has 1,000,000 states, the obtained speedup is still over 12X, showing that this heterogeneous programming model can solve MDPs more efficiently than the serial solver does.},
journal = {ACM International Conference Proceeding Series},
author = {Li, Ming and Hawrylak, Peter and Hale, John},
year = {2019},
keywords = {Heterogeneous computing, HPC, MDP, MPI, OpenCL, Parallelism},
file = {Combining OpenCL and MPI to Support Heterogeneous Computing on a Cluster:/home/noah/Zotero/storage/TXHCQ5S8/Combining OpenCL and MPI to Support Heterogeneous Computing on a Cluster.pdf:application/pdf},
}
@article{li_concurrency_2019,
title = {Concurrency {Strategies} for {Attack} {Graph} {Generation}},
issn = {9781728120805},
doi = {10.1109/ICDIS.2019.00033},
abstract = {The network attack graph is a powerful tool for analyzing network security, but the generation of a large-scale graph is non-trivial. The main challenge is from the explosion of network state space, which greatly increases time and storage costs. In this paper, three parallel algorithms are proposed to generate scalable attack graphs. An OpenMP-based programming implementation is used to test their performance. Compared with the serial algorithm, the best performance from the proposed algorithms provides a 10X speedup.},
journal = {Proceedings - 2019 2nd International Conference on Data Intelligence and Security, ICDIS 2019},
author = {Li, Ming and Hawrylak, Peter and Hale, John},
year = {2019},
keywords = {Attack Graph, Multi-threaded Programming, Network Security, OpenMP},
pages = {174--179},
file = {Ming_LI_Thesis:/home/noah/Zotero/storage/CLSLS335/Ming_LI_Thesis.pdf:application/pdf},
}
@article{ou_scalable_2006,
title = {A {Scalable} {Approach} to {Attack} {Graph} {Generation}},
issn = {1595935185},
author = {Ou, Xinming and Boyer, Wayne F and Mcqueen, Miles A},
year = {2006},
journal = {CCS '06: Proceedings of the 13th ACM conference on Computer and communications security},
keywords = {attack graphs, enterprise network security, logic-programming},
pages = {336--345},
file = {1180405.1180446:/home/noah/Zotero/storage/TJKHVC4R/1180405.1180446.pdf:application/pdf},
}
@article{yao_efficient_2018,
title = {An efficient graph accelerator with parallel data conflict management},
issn = {9781450359863},
doi = {10.1145/3243176.3243201},
abstract = {Graph-specific computing with the support of dedicated accelerator has greatly boosted the graph processing in both efficiency and energy. Nevertheless, their data conflict management is still sequential when certain vertex needs a large number of conflicting updates at the same time, leading to prohibitive performance degradation. This is particularly true and serious for processing natural graphs. In this paper, we have the insight that the atomic operations for the vertex updating of many graph algorithms (e.g., BFS, PageRank, andWCC) are typically incremental and simplex. This hence allows us to parallelize the conflicting vertex updates in an accumulative manner.We architect AccuGraph, a novel graph-specific accelerator that can simultaneously process atomic vertex updates for massive parallelism while ensuring the correctness. A parallel accumulator is designed to remove the serialization in atomic protections for conflicting vertex updates through merging their results in parallel. Our implementation on Xilinx FPGA with a wide variety of typical graph algorithms shows that our accelerator achieves an average throughput by 2.36 GTEPS as well as up to 3.14x performance speedup in comparison with state-of-the-art ForeGraph (with its single-chip version).},
journal = {Parallel Architectures and Compilation Techniques - Conference Proceedings, PACT},
author = {Yao, Pengcheng and Zheng, Long and Liao, Xiaofei and Jin, Hai and He, Bingsheng},
year = {2018},
file = {An efficient graph accelerator with parallel data conflict management:/home/noah/Zotero/storage/NMA7DQ5B/An efficient graph accelerator with parallel data conflict management.pdf:application/pdf},
}
@article{zhang_boosting_2017,
title = {Boosting the performance of {FPGA}-based graph processor using hybrid memory cube: {A} case for breadth first search},
issn = {9781450343541},
doi = {10.1145/3020078.3021737},
abstract = {Large graph processing has gained great attention in recent years due to its broad applicability from machine learning to social science. Large real-world graphs, however, are inherently difficult to process efficiently, not only due to their large memory footprint, but also that most graph algorithms entail memory access patterns with poor locality and a low compute-to-memory access ratio. In this work, we leverage the exceptional random access performance of emerging Hybrid Memory Cube (HMC) technology that stacks multiple DRAM dies on top of a logic layer, combined with the flexibility and efficiency of FPGA to address these challenges. To our best knowledge, this is the first work that implements a graph processing system on a FPGA-HMC platform based on software/hardware co-design and co-optimization. We first present the modifications of algorithm and a platform-aware graph processing architecture to perform level-synchronized breadth first search (BFS) on FPGA-HMC platform. To gain better insights into the potential bottlenecks of proposed implementation, we develop an analytical performance model to quantitatively evaluate the HMC access latency and corresponding BFS performance. Based on the analysis, we propose a two-level bitmap scheme to further reduce memory access and perform optimization on key design parameters (e.g. memory access granularity). Finally, we evaluate the performance of our BFS implementation using the AC-510 development kit from Micron. We achieved 166 million edges traversed per second (MTEPS) using GRAPH500 benchmark on a random graph with a scale of 25 and an edge factor of 16, which significantly outperforms CPU and other FPGA-based large graph processors.},
journal = {FPGA 2017 - Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays},
author = {Zhang, Jialiang and Khoram, Soroosh and Li, Jing},
year = {2017},
pages = {207--216},
file = {Boosting the Performance of FPGA-based Graph Processor using Hybrdi Memory Cube:/home/noah/Zotero/storage/CDKPUXYF/Boosting the Performance of FPGA-based Graph Processor using Hybrdi Memory Cube.pdf:application/pdf},
}
@book{pacheco_introduction_2011,
edition = {Print},
title = {An {Introduction} to {Parallel} {Programming}},
isbn = {978-0-12-374260-5},
publisher = {Morgan Kaufmann},
author = {Pacheco, Peter},
year = {2011}
}
@article{ammar_experimental_2018,
title = {Experimental {Analysis} of {Distributed} {Graph} {Systems}},
volume = {11},
doi = {10.14778/3231751.3231764},
abstract = {This paper evaluates eight parallel graph processing systems: Hadoop, HaLoop, Vertica, Giraph, GraphLab (PowerGraph), Blogel, Flink Gelly, and GraphX (SPARK) over four very large datasets (Twitter, World Road Network, UK 200705, and ClueWeb) using four workloads (PageRank, WCC, SSSP and K-hop). The main objective is to perform an independent scale-out study by experimentally analyzing the performance, usability, and scalability (using up to 128 machines) of these systems. In addition to performance results, we discuss our experiences in using these systems and suggest some system tuning heuristics that lead to better performance.},
number = {10},
urldate = {2021-04-02},
journal = {Proceedings of the VLDB Endowment},
author = {Ammar, Khaled and Ozsu, Tamer},
month = jun,
year = {2018},
keywords = {Computer Science - Distributed, Parallel, and Cluster Computing},
annote = {Comment: Volume 11 of Proc. VLDB Endowment},
file = {arXiv Fulltext PDF:/home/noah/Zotero/storage/QJA73MYR/Ammar and Ozsu - 2018 - Experimental Analysis of Distributed Graph Systems.pdf:application/pdf;arXiv.org Snapshot:/home/noah/Zotero/storage/TTUFSAHW/1806.html:text/html},
}
@article{mccune_thinking_2015,
title = {Thinking {Like} a {Vertex}: {A} {Survey} of {Vertex}-{Centric} {Frameworks} for {Large}-{Scale} {Distributed} {Graph} {Processing}},
volume = {48},
doi = {10.1145/2818185},
number = {2},
journal = {ACM Computing Surveys},
author = {McCune, Robert and Weninger, Tim and Madey, Greg},
year = {2015},
}
@inproceedings{dimov_pass--hash_2017,
title = {Pass-the-{Hash}: {One} of the {Most} {Prevalent} {Yet} {Underrated} {Attacks} for {Credentials} {Theft} and {Reuse}},
doi = {10.1145/3134302.3134338},
booktitle = {18th {International} {Conference} on {Computer} {Systems} and {Technologies}},
author = {Dimov, Dimo and Tzonev, Yulian},
year = {2017},
pages = {149--154},
}
@inproceedings{baloyi_guidelines_2019,
address = {Skukuza South Africa},
title = {Guidelines for {Data} {Privacy} {Compliance}: {A} {Focus} on {Cyberphysical} {Systems} and {Internet} of {Things}},
doi = {10.1145/3351108.3351143},
booktitle = {{SAICSIT} '19: {Proceedings} of the {South} {African} {Institute} of {Computer} {Scientists} and {Information} {Technologists} 2019},
publisher = {Association for Computing Machinery},
author = {Baloyi, Ntsako and Kotzé, Paula},
year = {2019},
}
@article{allman_complying_2006,
title = {Complying with {Compliance}: {Blowing} it off is not an option.},
volume = {4},
number = {7},
journal = {ACM Queue},
author = {Allman, Eric},
year = {2006},
}
@inproceedings{arifuzzaman_fast_2015,
title = {Fast parallel conversion of edge list to adjacency list for large-scale graphs},
booktitle = {{HPC} '15: {Proceedings} of the {Symposium} on {High} {Performance} {Computing}},
author = {Arifuzzaman, Shaikh and Khan, Maleq},
month = apr,
year = {2015},
pages = {17--24},
}
@inproceedings{yu_construction_2018,
title = {The {Construction} of {Large} {Graph} {Data} {Structures} in a {Scalable} {Distributed} {Message} {System}},
doi = {10.1145/3234664.3234682},
booktitle = {{HPCCT} 2018: {Proceedings} of the 2018 2nd {High} {Performance} {Computing} and {Cluster} {Technologies} {Conference}},
author = {Yu, Xinjie and Chen, Wentao and Miao, Jiajia and Chen, Jian and Mao, Handong and Luo, Qiong and Gu, Lin},
month = jun,
year = {2018},
pages = {6--10},
}
@inproceedings{liakos_memory-optimized_2016,
title = {Memory-{Optimized} {Distributed} {Graph} {Processing} through {Novel} {Compression} {Techniques}},
doi = {10.1145/2983323.2983687},
booktitle = {{CIKM} '16: {Proceedings} of the 25th {ACM} {International} {Conference} on {Information} and {Knowledge} {Management}},
author = {Liakos, Panagiotis and Papakonstantinopoulou, Katia and Delis, Alex},
month = oct,
year = {2016},
pages = {2317--2322},
}
@software{noauthor_parallel_nodate-1,
author = {{Nick Edmonds}, {Douglas Gregor}, {Andrew Lumsdaine}},
title = {Parallel {BGL} {Distributed} {Adjacency} {List}},
url = {https://www.boost.org/doc/libs/1_73_0/libs/graph_parallel/doc/html/distributed_adjacency_list.html},
version = {1.73.0},
urldate = {2021-04-11},
}
@misc{Slurm,
author = {SchedMD},
title = {Slurm {Workload} {Manager}},
howpublished = {https://slurm.schedmd.com/overview.html},
month = apr,
note = {Version 23.02},
year = {2023}
}
@inproceedings{balaji_graph_2016,
title = {Graph {Topology} {Abstraction} for {Distributed} {Path} {Queries}},
doi = {10.1145/2915516.2915520},
booktitle = {{HPGP} '16: {Proceedings} of the {ACM} {Workshop} on {High} {Performance} {Graph} {Processing}},
author = {Balaji, Janani and Sunderraman, Rajshekhar},
month = may,
year = {2016},
pages = {27--34},
}
@INPROCEEDINGS{9150145,
author={Li, Ming and Hawrylak, Peter J. and Hale, John},
booktitle={2020 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)},
title={Implementing an Attack Graph Generator in CUDA},
year={2020},
volume={},
number={},
pages={730-738},
doi={10.1109/IPDPSW50202.2020.00128}}
@INPROCEEDINGS{9678822,
author={Dakhno, Natalia and Leshchenko, Olga and Kravchenko, Yurii and Dudnik, Andriy and Trush, Olexandr and Khankishiev, Victor},
booktitle={2021 IEEE 3rd International Conference on Advanced Trends in Information Theory (ATIT)},
title={Dynamic Model of the Spread of Viruses in a Computer Network Using Differential Equations},
year={2021},
volume={},
number={},
pages={111-115},
doi={10.1109/ATIT54053.2021.9678822}}
@INPROCEEDINGS{7993827,
author={Kwon, Minhae and Kwon, Jungmin and Park, Byungchul and Park, Hyunggon},
booktitle={2017 Ninth International Conference on Ubiquitous and Future Networks (ICUFN)},
title={An architecture of IPTV networks based on network coding},
year={2017},
volume={},
number={},
pages={462-464},
doi={10.1109/ICUFN.2017.7993827}}
@INPROCEEDINGS{8652334,
author={Bai, Xiaodan and Liang, Mangui and Zhu, Senpeng},
booktitle={2018 14th IEEE International Conference on Signal Processing (ICSP)},
title={A New Routing Scheme for Large-scale Computer Network},
year={2018},
volume={},
number={},
pages={1019-1023},
doi={10.1109/ICSP.2018.8652334}}
@inproceedings{CPSIOT,
author = {Al Ghazo, Alaa T. and Ibrahim, Mariam and Ren, Hao and Kumar, Ratnesh},
title = {A2G2V: Automated Attack Graph Generator and Visualizer},
year = {2018},
isbn = {9781450358606},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3215466.3215468},
doi = {10.1145/3215466.3215468},
booktitle = {Proceedings of the 1st ACM MobiHoc Workshop on Mobile IoT Sensing, Security, and Privacy},
articleno = {3},
numpages = {6},
keywords = {Model Checking, Security, Enumerating Counterexamples, Internet of Things, Attack Graph, Cyber-Physical Systems},
location = {Los Angeles, CA, USA},
series = {Mobile IoT SSP'18}
}
@article{ming_jo,
author = {Li, Ming and Hawrylak, Peter and Hale, John},
title = {Strategies for Practical Hybrid Attack Graph Generation and Analysis},
year = {2021},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
issn = {2692-1626},
url = {https://doi.org/10.1145/3491257},
doi = {10.1145/3491257},
abstract = {As an analytical tool in cyber-security, an attack graph (AG) is capable of discovering multi-stage attack vectors on target computer networks. Cyber-physical systems (CPSs) comprise a special type of network that not only contains computing devices but also integrates components that operate in the continuous domain, such as sensors and actuators. Using AGs on CPSs requires that the system models and exploit patterns capture both token- and real-valued information. In this paper, we describe a hybrid AG model for security analysis of CPSs and computer networks. Specifically, we focus on two issues related to applying the model in practice: efficient hybrid AG generation and techniques for information extraction from them. To address the first issue, we present an accelerated hybrid AG generator that employs parallel programming and high performance computing (HPC). We conduct performance tests on CPU and GPU platforms to characterize the efficiency of our parallel algorithms. To address the second issue, we introduce an analytical regimen based on centrality analysis and apply it to a hybrid AG generated for a target CPS system to discover effective vulnerability remediation solutions.},
journal = {Digital Threats},
month = {oct},
keywords = {cyber-physical system, high performance computing, attack graph, breadth-first search}
}
@article{Gust,
author = {Gustafson, John L.},
title = {Reevaluating Amdahl's Law},
year = {1988},
issue_date = {May 1988},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
volume = {31},
number = {5},
issn = {0001-0782},
url = {https://doi.org/10.1145/42411.42415},
doi = {10.1145/42411.42415},
journal = {Commun. ACM},
month = {may},
pages = {532533},
numpages = {2}
}
@inproceedings{sun,
title={Another view on parallel speedup},
author={Sun, Xian-He and Ni, Lionel M},
booktitle={Proceedings of the 1990 ACM/IEEE conference on Supercomputing},
pages={324--333},
year={1990}
}
@inproceedings{Amdahl,
author = {Amdahl, Gene M.},
title = {Validity of the Single Processor Approach to Achieving Large Scale Computing Capabilities},
year = {1967},
isbn = {9781450378956},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/1465482.1465560},
doi = {10.1145/1465482.1465560},
booktitle = {Proceedings of the April 18-20, 1967, Spring Joint Computer Conference},
pages = {483485},
numpages = {3},
location = {Atlantic City, New Jersey},
series = {AFIPS '67 (Spring)}
}
@ARTICLE{10124989,
author={Schrick, Noah L. and Hawrylak, Peter J.},
journal={IEEE Open Journal of the Computer Society},
title={State Space Explosion Mitigation for Large-Scale Attack and Compliance Graphs Using Synchronous Exploit Firing},
year={2023},
volume={4},
number={},
pages={147-157},
doi={10.1109/OJCS.2023.3276370}
}

Binary file not shown.

View File

@ -0,0 +1,10 @@
#!/bin/bash
#
scp hammer:~/RAGE/projects/tasking_performance/slurm_reports/mpitasking/sync_data.csv .
mv sync_data.csv para_data.csv
scp hammer:~/RAGE/projects/tasking_performance/slurm_reports/serial/sync_data.csv .
mv sync_data.csv serial_data.csv
# No header, so not worried about copying headers
cat header.txt para_data.csv serial_data.csv > timing.csv

View File

@ -0,0 +1 @@
load,exploit,appl,nodes,runtime,task0,task1,task2,task3,task4,task5

View File

@ -0,0 +1,811 @@
395,6,0,2,1345.023000,0,202.585,271.173,98.4515,0,0
395,6,0,3,1753.742000,0,203.613,19.966,91.0985,0,0
395,6,0,4,2168.114000,0,211.21,26.232,117.512,0,0
395,6,0,5,1755.362000,0,202.993,20.585,89.884,0,0
395,6,0,6,2125.772000,0,208.668,25.811,112.805,0,0
395,6,0,7,1969.016000,0,279.401,20.407,100.743,0,0
395,6,0,8,1627.819000,0,168.995,255.474,90.7445,0,0
395,6,0,9,2119.303000,0,332.761,232.937,114.57,0,0
395,6,0,10,1888.811000,0,153.595,389.827,110.996,0,0
395,6,0,11,2246.655000,0,297.274,330.961,117.38,0,0
395,6,0,12,1614.087000,0,141.651,314.245,91.072,0,0
395,6,25,2,1358.991000,0,202.525,273.299,100.713,0,0
395,6,25,3,2243.092000,0,212.773,28.241,117.468,0,0
395,6,25,4,1745.402000,0,202.637,20.0945,90.533,0,0
395,6,25,5,2150.073000,0,208.975,26.11,116.733,0,0
395,6,25,6,1874.124000,0,201.836,20.1915,115.683,0,0
395,6,25,7,2197.299000,0,320.107,20.3105,116.736,0,0
395,6,25,8,1874.740000,0,169.439,273.463,115.393,0,0
395,6,25,9,1800.494000,0,286.907,207.546,91.752,0,0
395,6,25,10,2062.456000,0,171.823,369.409,116.871,0,0
395,6,25,11,2094.266000,0,288.113,314.761,116.597,0,0
395,6,25,12,1621.195000,0,142.197,311.018,91.068,0,0
395,6,50,2,1350.909000,0,203.326,272.78,98.027,0,0
395,6,50,3,2124.760000,0,209.196,25.4635,111.555,0,0
395,6,50,4,2137.857000,0,212.747,25.4855,115.766,0,0
395,6,50,5,1739.711000,0,202.653,20.169,90.6985,0,0
395,6,50,6,2227.316000,0,212.291,28.401,117.737,0,0
395,6,50,7,1976.772000,0,282.14,20.2575,101.45,0,0
395,6,50,8,1963.044000,0,170.618,293.566,116.48,0,0
395,6,50,9,2165.618000,0,322.922,261.868,116.678,0,0
395,6,50,10,1949.472000,0,152.686,382.245,115.002,0,0
395,6,50,11,2276.553000,0,315.105,314.741,117.215,0,0
395,6,50,12,1955.101000,0,141.803,378.732,116.056,0,0
395,6,75,2,1346.670000,0,203.429,270.659,98.0795,0,0
395,6,75,3,1747.437000,0,202.597,19.9695,90.4655,0,0
395,6,75,4,1742.203000,0,201.253,20.054,91.1335,0,0
395,6,75,5,1730.250000,0,201.376,20.157,90.4905,0,0
395,6,75,6,1734.936000,0,200.357,20.2025,90.947,0,0
395,6,75,7,1877.662000,0,259.433,20.2445,91.433,0,0
395,6,75,8,1632.848000,0,170.694,254.632,90.804,0,0
395,6,75,9,2142.006000,0,332.026,235.69,117.002,0,0
395,6,75,10,1764.884000,0,152.321,341.581,91.932,0,0
395,6,75,11,1771.415000,0,247.91,289.915,93.298,0,0
395,6,75,12,1948.118000,0,142.015,378.803,116.114,0,0
395,6,100,2,1353.227000,0,202.975,273.389,98.5045,0,0
395,6,100,3,1943.074000,0,206.391,22.603,105.864,0,0
395,6,100,4,1750.669000,0,202.196,20.072,90.8585,0,0
395,6,100,5,1741.931000,0,202.938,20.2425,90.7695,0,0
395,6,100,6,2320.943000,0,236.828,26.407,116.434,0,0
395,6,100,7,2169.722000,0,332.258,20.7225,115.994,0,0
395,6,100,8,1883.336000,0,169.9,275.065,116.151,0,0
395,6,100,9,2262.878000,0,321.533,269.454,116.687,0,0
395,6,100,10,2089.755000,0,174.817,396.923,116.327,0,0
395,6,100,11,2072.984000,0,284.653,307.649,115.929,0,0
395,6,100,12,1933.103000,0,141.931,396.071,115.296,0,0
395,12,0,2,1459.816000,0,256.55,270.888,100.083,0,0
395,12,0,3,1855.136000,0,255.11,19.942,91.0025,0,0
395,12,0,4,1856.482000,0,257.083,19.9715,91.4165,0,0
395,12,0,5,1842.013000,0,254.205,20.0645,91.7935,0,0
395,12,0,6,2119.404000,0,261.396,20.4175,115.755,0,0
395,12,0,7,2071.853000,0,305.62,20.3225,92.664,0,0
395,12,0,8,2091.085000,0,239.699,308.85,110.613,0,0
395,12,0,9,2313.498000,0,346.951,270.045,116.869,0,0
395,12,0,10,2118.630000,0,200.645,408.819,107.953,0,0
395,12,0,11,2193.711000,0,367.302,306.431,115.568,0,0
395,12,0,12,1971.534000,0,164.029,387.061,115.01,0,0
395,12,25,2,1575.580000,0,280.287,311.332,98.4815,0,0
395,12,25,3,1911.666000,0,280.776,53.9105,91.1425,0,0
395,12,25,4,2309.115000,0,289.176,63.4615,118.216,0,0
395,12,25,5,2392.366000,0,295.926,67.044,117.675,0,0
395,12,25,6,1901.884000,0,279.655,53.6755,90.836,0,0
395,12,25,7,2490.346000,0,401.991,57.094,116.903,0,0
395,12,25,8,2000.497000,0,220.075,311.813,116.262,0,0
395,12,25,9,2117.957000,0,346.028,247.361,114.8,0,0
395,12,25,10,2083.278000,0,189.492,404.057,115.927,0,0
395,12,25,11,2178.739000,0,357.125,315.398,117.589,0,0
395,12,25,12,2113.941000,0,172.639,412.838,116.718,0,0
395,12,50,2,1831.881000,0,336.504,377.716,100.564,0,0
395,12,50,3,2618.202000,0,362.998,153.403,118.133,0,0
395,12,50,4,2638.342000,0,367.927,153.945,118.601,0,0
395,12,50,5,2189.668000,0,338.558,115.245,116.657,0,0
395,12,50,6,2828.621000,0,438.284,153.238,119.006,0,0
395,12,50,7,2564.292000,0,474.558,119.538,117.775,0,0
395,12,50,8,1749.003000,0,246.536,322.999,90.5255,0,0
395,12,50,9,2229.410000,0,414.233,264.009,116.862,0,0
395,12,50,10,1947.524000,0,210.022,451.354,111.487,0,0
395,12,50,11,1892.300000,0,356.357,342.917,90.8285,0,0
395,12,50,12,2043.720000,0,189.188,458.22,115.434,0,0
395,12,75,2,1934.387000,0,359.569,406.311,99.3245,0,0
395,12,75,3,2196.645000,0,365.16,149.712,94.4875,0,0
395,12,75,4,2148.053000,0,359.089,145.446,91.9305,0,0
395,12,75,5,2843.611000,0,394.076,197.897,118.239,0,0
395,12,75,6,2240.015000,0,360.029,145.29,115.017,0,0
395,12,75,7,2544.315000,0,451.839,148.829,115.883,0,0
395,12,75,8,2010.329000,0,264.64,371.928,109.544,0,0
395,12,75,9,2384.461000,0,426.098,369.991,117.764,0,0
395,12,75,10,2044.359000,0,220.811,449.402,115.651,0,0
395,12,75,11,2257.906000,0,404.955,377.139,116.907,0,0
395,12,75,12,2050.492000,0,209.268,465.545,114.226,0,0
395,12,100,2,2183.960000,0,413.747,471.578,99.828,0,0
395,12,100,3,2384.107000,0,414.24,207.152,92.1115,0,0
395,12,100,4,2390.608000,0,414.932,208.192,92.178,0,0
395,12,100,5,2371.224000,0,413.609,205.725,91.5325,0,0
395,12,100,6,2430.153000,0,413.137,206.739,110.08,0,0
395,12,100,7,2950.801000,0,619.575,210.355,119.503,0,0
395,12,100,8,2110.008000,0,316.819,419.015,99.909,0,0
395,12,100,9,2084.115000,0,446.287,316.394,91.3055,0,0
395,12,100,10,1991.115000,0,242.015,471.864,110.037,0,0
395,12,100,11,2234.590000,0,484.443,388.117,108.035,0,0
395,12,100,12,1725.536000,0,214.17,403.38,90.7875,0,0
395,24,0,2,1639.989000,0,361.32,261.448,96.1615,0,0
395,24,0,3,2103.166000,0,361.404,20.5875,95.8795,0,0
395,24,0,4,2552.327000,0,368.114,28.1075,117.957,0,0
395,24,0,5,2092.099000,0,360.619,20.7075,92.7235,0,0
395,24,0,6,2441.577000,0,364.633,25.1985,117.599,0,0
395,24,0,7,2192.649000,0,371.917,20.7245,114.137,0,0
395,24,0,8,1806.898000,0,274.921,257.5,93.3315,0,0
395,24,0,9,2269.505000,0,396.648,264.187,117.551,0,0
395,24,0,10,2094.279000,0,232.62,408.463,116.891,0,0
395,24,0,11,2238.497000,0,340.524,304.963,109.248,0,0
395,24,0,12,2205.452000,0,239.805,495.966,117.336,0,0
395,24,25,2,2155.785000,0,466.01,409.369,99.792,0,0
395,24,25,3,2564.785000,0,472.307,163.425,106.711,0,0
395,24,25,4,2352.598000,0,462.248,145.54,90.8185,0,0
395,24,25,5,2691.712000,0,541.11,145.546,116.161,0,0
395,24,25,6,2349.938000,0,465.716,145.136,91.518,0,0
395,24,25,7,2516.958000,0,513.955,150.137,92.705,0,0
395,24,25,8,2228.725000,0,337.289,390.245,117.193,0,0
395,24,25,9,2536.317000,0,483.204,401.781,117.116,0,0
395,24,25,10,1853.631000,0,273.091,409.64,91.0685,0,0
395,24,25,11,2305.174000,0,449.946,364.938,117.185,0,0
395,24,25,12,2133.613000,0,266.577,436.579,117.654,0,0
395,24,50,2,2788.651000,0,622.232,560.378,100.781,0,0
395,24,50,3,3002.032000,0,616.279,304.106,94.465,0,0
395,24,50,4,2979.269000,0,619.744,298.183,86.167,0,0
395,24,50,5,3911.775000,0,744.535,422.398,119.721,0,0
395,24,50,6,3734.809000,0,663.143,424.494,119.205,0,0
395,24,50,7,3207.107000,0,694.677,304.169,92.934,0,0
395,24,50,8,2341.337000,0,422.753,465.513,116.27,0,0
395,24,50,9,2583.974000,0,606.853,385.032,117.368,0,0
395,24,50,10,1921.594000,0,328.551,493.656,90.1475,0,0
395,24,50,11,2423.060000,0,524.351,442.365,116.548,0,0
395,24,50,12,1954.706000,0,280.921,451.563,105.714,0,0
395,24,75,2,3216.203000,0,705.956,684.863,100.554,0,0
395,24,75,3,3486.686000,0,707.48,442.225,95.992,0,0
395,24,75,4,3461.625000,0,712.72,427.823,93.5945,0,0
395,24,75,5,3491.883000,0,710.457,419.631,115.398,0,0
395,24,75,6,3414.774000,0,709.226,418.217,93.8745,0,0
395,24,75,7,3940.430000,0,831.238,453.488,118.057,0,0
395,24,75,8,2523.119000,0,486.478,545.73,115.263,0,0
395,24,75,9,2598.430000,0,672.334,467.318,91.473,0,0
395,24,75,10,2022.882000,0,385.558,548.338,91.7565,0,0
395,24,75,11,2669.803000,0,616.729,551.766,117.411,0,0
395,24,75,12,1869.334000,0,316.055,485.743,90.991,0,0
395,24,100,2,3901.148000,0,880.812,845.36,100.38,0,0
395,24,100,3,4209.905000,0,878.051,612.71,100.392,0,0
395,24,100,4,4091.569000,0,880.901,573.893,93.173,0,0
395,24,100,5,4723.892000,0,886.93,748.231,121.987,0,0
395,24,100,6,4483.694000,0,947.258,589.345,117.085,0,0
395,24,100,7,4913.337000,0,1118.15,625.77,98.1235,0,0
395,24,100,8,2698.333000,0,598.168,646.053,92.0685,0,0
395,24,100,9,3057.743000,0,826.737,561.307,93.2605,0,0
395,24,100,10,2833.499000,0,543.723,864.376,117.304,0,0
395,24,100,11,2505.900000,0,708.572,549.437,92.18,0,0
395,24,100,12,2344.725000,0,404.533,611.834,117.076,0,0
395,48,0,2,2095.854000,0,569.083,276.4,100.256,0,0
395,48,0,3,2799.754000,0,577.141,22.8845,114.755,0,0
395,48,0,4,2468.906000,0,570.944,20.086,87.2395,0,0
395,48,0,5,2718.553000,0,620.623,20.2595,93.9965,0,0
395,48,0,6,2616.546000,0,572.371,20.2305,116.056,0,0
395,48,0,7,2424.077000,0,516.08,20.3585,117.131,0,0
395,48,0,8,2317.988000,0,422.206,283.664,116.859,0,0
395,48,0,9,2339.575000,0,499.439,223.398,116.187,0,0
395,48,0,10,1889.101000,0,336.449,337.611,91.3935,0,0
395,48,0,11,2339.764000,0,456.289,326.211,117.239,0,0
395,48,0,12,2122.507000,0,290.271,370.542,115.793,0,0
395,48,25,2,3334.013000,0,850.559,600.955,103.394,0,0
395,48,25,3,4056.468000,0,850.09,454.216,119.842,0,0
395,48,25,4,3583.026000,0,851.181,348.187,97.13,0,0
395,48,25,5,3516.397000,0,850.199,329.606,93.896,0,0
395,48,25,6,3520.944000,0,860.391,326.797,92.342,0,0
395,48,25,7,3662.449000,0,892.643,331.145,118.259,0,0
395,48,25,8,2414.906000,0,578.94,468.45,91.445,0,0
395,48,25,9,2880.284000,0,772.026,418.939,118.479,0,0
395,48,25,10,2478.415000,0,514.51,553.351,117.592,0,0
395,48,25,11,2608.551000,0,717.288,471.554,108.591,0,0
395,48,25,12,2242.610000,0,406.579,502.916,111.28,0,0
395,48,50,2,4718.826000,0,1178.64,945.099,106.523,0,0
395,48,50,3,4869.194000,0,1179.43,661.726,93.0195,0,0
395,48,50,4,4854.372000,0,1168.9,663.651,93.034,0,0
395,48,50,5,5211.637000,0,1312.9,664.113,118.883,0,0
395,48,50,6,4935.758000,0,1175.9,665.232,119.071,0,0
395,48,50,7,5465.009000,0,1411.53,674.034,120.706,0,0
395,48,50,8,3704.790000,0,841.562,874.001,119.146,0,0
395,48,50,9,3711.243000,0,1056.57,646.897,114.284,0,0
395,48,50,10,2431.106000,0,593.548,680.9,92.6725,0,0
395,48,50,11,3096.803000,0,866.481,674.768,120.611,0,0
395,48,50,12,2714.194000,0,519.764,721.637,117.479,0,0
395,48,75,2,5831.213000,0,1414.72,1252.62,104.49,0,0
395,48,75,3,6007.522000,0,1410.08,973.007,94.277,0,0
395,48,75,4,5995.464000,0,1402.98,975.814,93.239,0,0
395,48,75,5,5923.885000,0,1392.01,965.23,94.557,0,0
395,48,75,6,6945.668000,0,1504.28,1165.11,123.726,0,0
395,48,75,7,6628.007000,0,1598.12,979.968,96.6,0,0
395,48,75,8,4161.409000,0,1082.63,1052.27,120.784,0,0
395,48,75,9,4010.764000,0,1231.08,833.879,92.873,0,0
395,48,75,10,3116.232000,0,810.367,876.663,118.367,0,0
395,48,75,11,3518.998000,0,1095.8,803.587,118.507,0,0
395,48,75,12,2966.497000,0,649.131,1012.66,118.755,0,0
395,48,100,2,7367.644000,0,1825.74,1590.42,107.839,0,0
395,48,100,3,8523.819000,0,1813.74,1684.32,124.695,0,0
395,48,100,4,8137.964000,0,1819.21,1498.72,124.676,0,0
395,48,100,5,7476.306000,0,1810.84,1302.84,94.522,0,0
395,48,100,6,7482.702000,0,1818.31,1299.53,95.0575,0,0
395,48,100,7,8480.694000,0,2178.84,1305.82,109.695,0,0
395,48,100,8,4962.832000,0,1350.59,1305.33,120.866,0,0
395,48,100,9,5033.703000,0,1587.41,1039.1,121.368,0,0
395,48,100,10,3222.417000,0,885.538,1005.15,92.569,0,0
395,48,100,11,4153.083000,0,1432.2,948.491,119.647,0,0
395,48,100,12,2867.038000,0,746.542,890.177,111.131,0,0
395,96,0,2,2934.745000,0,975.82,285.393,104.292,0,0
395,96,0,3,3722.875000,0,997.675,24.7425,119.143,0,0
395,96,0,4,3579.717000,0,989.104,21.2705,114.276,0,0
395,96,0,5,3749.775000,0,1087.94,23.4485,110.116,0,0
395,96,0,6,3289.465000,0,976.597,20.331,91.163,0,0
395,96,0,7,2666.939000,0,780.658,20.322,91.1425,0,0
395,96,0,8,2430.340000,0,692.896,253.249,92.6575,0,0
395,96,0,9,2256.126000,0,676.825,205.872,84.4955,0,0
395,96,0,10,2804.789000,0,662.666,473.934,117.751,0,0
395,96,0,11,2689.338000,0,767.384,320.339,115.798,0,0
395,96,0,12,2620.871000,0,493.445,487.959,118.457,0,0
395,96,25,2,5681.418000,0,1619.13,985.733,105.814,0,0
395,96,25,3,5936.851000,0,1628.06,729.106,99.6185,0,0
395,96,25,4,6092.729000,0,1702.94,728.648,98.1,0,0
395,96,25,5,6682.354000,0,1652.77,936.677,123.528,0,0
395,96,25,6,6061.286000,0,1622.04,710.711,119.574,0,0
395,96,25,7,5771.986000,0,1625.24,694.465,98.238,0,0
395,96,25,8,3698.008000,0,1094.15,734.408,117.299,0,0
395,96,25,9,3715.480000,0,1243.47,646.895,97.0015,0,0
395,96,25,10,3316.532000,0,922.786,800.075,116.087,0,0
395,96,25,11,3379.941000,0,1080.65,645.708,118.818,0,0
395,96,25,12,2993.694000,0,727.395,832.92,118.329,0,0
395,96,50,2,8546.823000,0,2299.91,1701.66,107.222,0,0
395,96,50,3,8691.978000,0,2320.72,1391.84,95.862,0,0
395,96,50,4,9646.260000,0,2294.95,1758.44,124.619,0,0
395,96,50,5,8677.801000,0,2307.15,1398.02,96.4925,0,0
395,96,50,6,8623.420000,0,2290.06,1398.73,90.4865,0,0
395,96,50,7,9642.915000,0,2613.73,1469.37,98.7875,0,0
395,96,50,8,5231.026000,0,1588.51,1257.85,121.783,0,0
395,96,50,9,5966.407000,0,1857.12,1368.71,123.636,0,0
395,96,50,10,3935.490000,0,1135.16,1208.73,119.569,0,0
395,96,50,11,4568.302000,0,1716.08,983.73,120.531,0,0
395,96,50,12,3161.044000,0,951.611,916.064,113.859,0,0
395,96,75,2,10957.959000,0,2802.3,2367.62,110.266,0,0
395,96,75,3,13082.870000,0,2924,2751.26,125.164,0,0
395,96,75,4,11736.979000,0,2796.85,2281.6,125.851,0,0
395,96,75,5,11779.672000,0,2805.4,2296.31,125.707,0,0
395,96,75,6,11093.473000,0,2791.91,2057.25,95.8365,0,0
395,96,75,7,12037.270000,0,3164.48,2062.49,97.085,0,0
395,96,75,8,6330.420000,0,1893.59,1711.58,99.46,0,0
395,96,75,9,7219.510000,0,2430.49,1632.79,95.293,0,0
395,96,75,10,4595.736000,0,1500.76,1402.25,93.9005,0,0
395,96,75,11,5611.921000,0,2033.72,1357.71,104.916,0,0
395,96,75,12,3946.947000,0,1161.53,1351.73,120.96,0,0
395,96,100,2,14113.085000,0,3640.97,3071.81,110.729,0,0
395,96,100,3,15384.242000,0,3663.38,3185.66,123.681,0,0
395,96,100,4,14522.191000,0,3636.32,2871.47,111.871,0,0
395,96,100,5,14259.050000,0,3654.59,2778.91,95.846,0,0
395,96,100,6,14187.626000,0,3627.87,2768.18,93.4515,0,0
395,96,100,7,16143.299000,0,4306.59,2791.55,124.136,0,0
395,96,100,8,8072.724000,0,2506.24,2199.15,123.359,0,0
395,96,100,9,8850.024000,0,3050.45,2004.91,96.4985,0,0
395,96,100,10,5526.483000,0,1744.21,1786.22,121.115,0,0
395,96,100,11,6853.540000,0,2626.69,1684.11,123.132,0,0
395,96,100,12,4654.352000,0,1483.24,1618.67,122.095,0,0
395,192,0,2,4601.707000,0,1801.37,292.285,104.803,0,0
395,192,0,3,5321.093000,0,1820.99,21.536,120.045,0,0
395,192,0,4,5314.946000,0,1821.8,21.6505,121.508,0,0
395,192,0,5,5365.572000,0,1810.46,24.2765,121.07,0,0
395,192,0,6,4971.515000,0,1817.99,20.398,88.2525,0,0
395,192,0,7,3699.609000,0,1351.45,20.675,117.685,0,0
395,192,0,8,3614.425000,0,1252.83,292.637,109.877,0,0
395,192,0,9,2890.936000,0,1099.59,207.927,91.78,0,0
395,192,0,10,2915.832000,0,962.074,374.621,108.655,0,0
395,192,0,11,2984.722000,0,938.975,311.515,115.098,0,0
395,192,0,12,3074.387000,0,871.105,525.565,117.826,0,0
395,192,25,2,10310.054000,0,3146.94,1731.36,109.915,0,0
395,192,25,3,10431.343000,0,3148.35,1431.63,95.9595,0,0
395,192,25,4,10380.849000,0,3115.73,1432.58,95.642,0,0
395,192,25,5,10437.363000,0,3148.89,1415.83,121.573,0,0
395,192,25,6,10401.804000,0,3154.39,1417.57,95.769,0,0
395,192,25,7,10329.309000,0,3163.93,1421.29,124.156,0,0
395,192,25,8,6017.192000,0,2122.61,1240.61,120.941,0,0
395,192,25,9,6023.373000,0,2269.01,1133.72,95.715,0,0
395,192,25,10,4596.630000,0,1701.62,1118.73,120.495,0,0
395,192,25,11,5434.874000,0,2289.48,1033.8,118.976,0,0
395,192,25,12,3398.469000,0,1288.57,896.524,93.0195,0,0
395,192,50,2,16083.744000,0,4541.35,3154.44,110.42,0,0
395,192,50,3,16147.581000,0,4533.83,2836.89,96.1765,0,0
395,192,50,4,16304.141000,0,4550.91,2888.24,97.1435,0,0
395,192,50,5,16393.503000,0,4535.63,2942.93,101.126,0,0
395,192,50,6,16223.645000,0,4534.02,2853.15,119.499,0,0
395,192,50,7,17292.386000,0,4922.3,2879.12,123.915,0,0
395,192,50,8,9076.206000,0,3053.94,2264.77,118.421,0,0
395,192,50,9,10186.754000,0,3534.76,2382.7,115.68,0,0
395,192,50,10,6666.921000,0,2206.08,2170.19,123.888,0,0
395,192,50,11,7055.462000,0,2751.42,1737.25,123.412,0,0
395,192,50,12,5239.035000,0,1848.13,1708.4,121.861,0,0
395,192,75,2,21072.768000,0,5574.28,4553.35,109.61,0,0
395,192,75,3,21858.414000,0,5581.22,4457.48,126.793,0,0
395,192,75,4,21961.759000,0,5587.23,4493.41,125.997,0,0
395,192,75,5,21158.076000,0,5561.34,4252.21,94.257,0,0
395,192,75,6,21249.052000,0,5574.58,4248.29,121.756,0,0
395,192,75,7,23362.033000,0,6341.21,4282.8,124.719,0,0
395,192,75,8,11380.231000,0,3735.49,3182.02,97.0275,0,0
395,192,75,9,12998.198000,0,4720.18,3022.06,96.343,0,0
395,192,75,10,8245.965000,0,2969.44,2552.22,122.941,0,0
395,192,75,11,9877.774000,0,3950.98,2459.71,123.393,0,0
395,192,75,12,6515.535000,0,2260.25,2301.27,124.161,0,0
395,192,100,2,27529.643000,0,7262.41,6010.27,109.576,0,0
395,192,100,3,27598.985000,0,7279.7,5674.37,97.3525,0,0
395,192,100,4,27498.321000,0,7266.98,5648.89,96.0555,0,0
395,192,100,5,27741.426000,0,7243.2,5782.25,95.7735,0,0
395,192,100,6,27540.738000,0,7269.04,5665.75,96.0405,0,0
395,192,100,7,31607.270000,0,8637.63,5775.18,121.668,0,0
395,192,100,8,14780.799000,0,4910.25,4170.31,121.134,0,0
395,192,100,9,16914.990000,0,6017.62,4022.35,123.05,0,0
395,192,100,10,9951.033000,0,3479.85,3313.68,126.08,0,0
395,192,100,11,11870.378000,0,4636.75,3236.94,120.245,0,0
395,192,100,12,7733.293000,0,2947.75,2646.85,96.5,0,0
395,384,0,2,7977.679000,0,3464.34,311.764,109.026,0,0
395,384,0,3,8339.067000,0,3474.68,20.217,94.0095,0,0
395,384,0,4,8277.756000,0,3445.4,20.414,93.475,0,0
395,384,0,5,8681.634000,0,3487.37,23.1455,123.548,0,0
395,384,0,6,8621.840000,0,3458.18,23.384,123.874,0,0
395,384,0,7,5217.864000,0,2464.76,20.5815,94.472,0,0
395,384,0,8,5214.191000,0,2345.16,278.082,120.206,0,0
395,384,0,9,3997.911000,0,1925.18,209.298,92.6855,0,0
395,384,0,10,4153.470000,0,1791.09,401.018,116.309,0,0
395,384,0,11,3444.276000,0,1548.7,295.14,95.257,0,0
395,384,0,12,3284.650000,0,1460.86,312.315,91.4355,0,0
395,384,25,2,19503.331000,0,6205.31,3198.11,109.01,0,0
395,384,25,3,19698.786000,0,6244.68,2891.12,94.8075,0,0
395,384,25,4,20886.600000,0,6264.46,3334.97,125.154,0,0
395,384,25,5,19653.173000,0,6238.55,2884.92,95.2715,0,0
395,384,25,6,19692.151000,0,6233.69,2891,96.1435,0,0
395,384,25,7,18988.804000,0,6066.75,2864.48,120.948,0,0
395,384,25,8,11088.169000,0,4197.45,2479.72,124.771,0,0
395,384,25,9,10852.805000,0,4371.07,2132.31,97.6375,0,0
395,384,25,10,7897.380000,0,3057.26,2211.17,124.561,0,0
395,384,25,11,7996.507000,0,3458.41,1760.77,122.872,0,0
395,384,25,12,6195.100000,0,2600.54,1710.63,122.435,0,0
395,384,50,2,31138.416000,0,9016.73,6067.99,111.642,0,0
395,384,50,3,31854.640000,0,9109.63,5924.08,110.382,0,0
395,384,50,4,31347.939000,0,9022.97,5793.02,96.989,0,0
395,384,50,5,31208.401000,0,9006.88,5749.44,96.547,0,0
395,384,50,6,31246.669000,0,9020.24,5768.51,96.093,0,0
395,384,50,7,33444.245000,0,9756.6,5850.53,125.698,0,0
395,384,50,8,16527.071000,0,6062.47,4231.59,96.1005,0,0
395,384,50,9,18055.540000,0,6887.93,4032.04,96.302,0,0
395,384,50,10,11517.792000,0,4425.08,3529.46,120.802,0,0
395,384,50,11,12742.611000,0,5328.13,3228.8,118.555,0,0
395,384,50,12,8685.851000,0,3646.53,2707.65,96.393,0,0
395,384,75,2,41332.158000,0,11124.9,8918.13,109.91,0,0
395,384,75,3,41451.130000,0,11124.2,8617.51,96.884,0,0
395,384,75,4,41411.856000,0,11097,8627.32,96.1485,0,0
395,384,75,5,41664.967000,0,11139.1,8712.31,95.816,0,0
395,384,75,6,41500.083000,0,11116,8639.95,97.386,0,0
395,384,75,7,45426.090000,0,12595.9,8607.51,123.94,0,0
395,384,75,8,21577.843000,0,7428.11,6157.51,95.867,0,0
395,384,75,9,25006.736000,0,9283.46,5983.08,123.75,0,0
395,384,75,10,15211.662000,0,5921.36,4775.06,98.68,0,0
395,384,75,11,18509.026000,0,7732.51,4835.4,124.387,0,0
395,384,75,12,11515.651000,0,4498.16,3942.92,128.605,0,0
395,384,100,2,54497.060000,0,14693.5,11802.2,114.299,0,0
395,384,100,3,56747.048000,0,14732.5,12351.3,127.398,0,0
395,384,100,4,54319.104000,0,14544.4,11511.4,97.0645,0,0
395,384,100,5,54301.686000,0,14554.2,11498.3,96.32,0,0
395,384,100,6,54588.808000,0,14590.7,11582.3,96.499,0,0
395,384,100,7,61856.814000,0,17190.4,11624,96.9515,0,0
395,384,100,8,28082.903000,0,9753.81,8078.04,96.376,0,0
395,384,100,9,32531.092000,0,11863.3,7850.66,96.3605,0,0
395,384,100,10,18727.190000,0,6925.67,6305.58,122.722,0,0
395,384,100,11,22264.157000,0,9110.15,6139.31,97.583,0,0
395,384,100,12,14471.432000,0,5835.11,5034.71,94.472,0,0
395,768,0,2,14729.729000,0,6832.49,317.39,110.245,0,0
395,768,0,3,14858.224000,0,6738.95,19.8745,95.414,0,0
395,768,0,4,15345.196000,0,6827.16,21.742,125.978,0,0
395,768,0,5,15359.475000,0,6906.74,20.5795,121.593,0,0
395,768,0,6,15424.268000,0,6834.73,24.805,122.937,0,0
395,768,0,7,8709.976000,0,4671.07,20.4865,120.051,0,0
395,768,0,8,9736.867000,0,4944.69,653.924,121.894,0,0
395,768,0,9,6249.027000,0,3585.09,211.376,94.6675,0,0
395,768,0,10,6696.952000,0,3497.27,539.475,120.954,0,0
395,768,0,11,5095.723000,0,2885.07,296.362,92.9885,0,0
395,768,0,12,5338.446000,0,2771.04,407.579,124.701,0,0
395,768,25,2,38004.471000,0,12401.7,6113.03,108.151,0,0
395,768,25,3,38473.200000,0,12414.5,5908.53,118.004,0,0
395,768,25,4,37848.694000,0,12257.6,5822.64,95.579,0,0
395,768,25,5,38190.741000,0,12394.4,5857.93,96.9145,0,0
395,768,25,6,38042.486000,0,12353.5,5812.18,121.19,0,0
395,768,25,7,36751.255000,0,12065.6,5806.57,98.063,0,0
395,768,25,8,19672.997000,0,8198.52,4198.16,97.6015,0,0
395,768,25,9,20433.719000,0,8576.06,4073.24,123.155,0,0
395,768,25,10,13287.304000,0,6028.48,3302.9,98.0465,0,0
395,768,25,11,14408.981000,0,6688.02,3220.73,109.568,0,0
395,768,25,12,10314.660000,0,4967.2,2690.04,96.783,0,0
395,768,50,2,61267.000000,0,18012.3,11854.6,111.52,0,0
395,768,50,3,62860.217000,0,18044.3,12186.2,110.748,0,0
395,768,50,4,62170.511000,0,17994,11841.6,124.942,0,0
395,768,50,5,61765.899000,0,18013.4,11720.8,121.394,0,0
395,768,50,6,61488.155000,0,17975.5,11628.3,122.871,0,0
395,768,50,7,65788.404000,0,19500.8,11816.9,96.9035,0,0
395,768,50,8,31649.420000,0,12007.9,8200.4,97.3045,0,0
395,768,50,9,34863.549000,0,13559,7934.7,121.1,0,0
395,768,50,10,20921.693000,0,8613.69,6310.58,97.7115,0,0
395,768,50,11,24045.746000,0,10416.9,6244.46,97.4555,0,0
395,768,50,12,17321.339000,0,7230.12,5856.24,126.095,0,0
395,768,75,2,81787.781000,0,22218.4,17639.6,110.86,0,0
395,768,75,3,81835.384000,0,22177.2,17344.8,96.3895,0,0
395,768,75,4,81827.735000,0,22146.8,17360.1,95.992,0,0
395,768,75,5,83221.466000,0,22428.5,17674.9,125.844,0,0
395,768,75,6,81784.946000,0,22150.4,17334.2,118.951,0,0
395,768,75,7,89503.710000,0,24983.8,17379.2,122.589,0,0
395,768,75,8,42480.337000,0,14921.5,12266.9,126.948,0,0
395,768,75,9,49848.334000,0,18453.1,12475.6,127.254,0,0
395,768,75,10,29302.443000,0,11761.7,9318.21,95.694,0,0
395,768,75,11,36296.353000,0,15090.2,10097.9,128.278,0,0
395,768,75,12,22136.128000,0,8917.77,7951.38,125.95,0,0
395,768,100,2,107661.626000,0,29122.3,23377.6,109.939,0,0
395,768,100,3,107611.139000,0,29053.6,23099.5,95.9655,0,0
395,768,100,4,112820.109000,0,29508.3,25021.5,121.273,0,0
395,768,100,5,107493.551000,0,29030.8,23056.7,96.4985,0,0
395,768,100,6,108587.512000,0,29172.7,23334.1,126.186,0,0
395,768,100,7,122685.637000,0,34394.4,23289,95.3195,0,0
395,768,100,8,54880.282000,0,19414.3,15942.1,93.1575,0,0
395,768,100,9,64392.251000,0,23675.9,15921.2,96.4135,0,0
395,768,100,10,36444.141000,0,13890.1,12405.1,96.7545,0,0
395,768,100,11,43617.494000,0,17961,12320.6,98.1945,0,0
395,768,100,12,27992.085000,0,11674.8,9766.62,119.654,0,0
395,1536,0,2,28050.279000,0,13485.1,319.073,113.756,0,0
395,1536,0,3,28189.627000,0,13399.2,20.3855,93.6465,0,0
395,1536,0,4,28567.375000,0,13589.3,20.106,96.287,0,0
395,1536,0,5,28790.115000,0,13700.8,20.1985,96.2975,0,0
395,1536,0,6,27878.632000,0,13249.3,20.302,96.1905,0,0
395,1536,0,7,15917.209000,0,9460.31,20.881,123.598,0,0
395,1536,0,8,15312.786000,0,9010.46,332.103,123.014,0,0
395,1536,0,9,10711.672000,0,6889.3,215.259,95.1135,0,0
395,1536,0,10,10440.211000,0,6693.92,343.196,96.7705,0,0
395,1536,0,11,8434.146000,0,5538.5,299.306,95.0475,0,0
395,1536,0,12,8991.850000,0,5519.83,558.562,124.358,0,0
395,1536,25,2,74586.110000,0,24610,11912.4,111.775,0,0
395,1536,25,3,75803.693000,0,24673.4,12045,109.584,0,0
395,1536,25,4,74600.770000,0,24573.6,11611.1,96.335,0,0
395,1536,25,5,74293.834000,0,24441.3,11591.1,96.0755,0,0
395,1536,25,6,74971.748000,0,24669,11606.6,122.607,0,0
395,1536,25,7,72373.453000,0,23952.1,11684.7,122.656,0,0
395,1536,25,8,38239.344000,0,16375.8,8191.14,123,0,0
395,1536,25,9,39384.121000,0,16942.3,7954.93,96.6445,0,0
395,1536,25,10,25501.891000,0,11920.3,6430.88,96.3195,0,0
395,1536,25,11,28578.887000,0,13120,7018.9,127.593,0,0
395,1536,25,12,20351.560000,0,9967.86,5505.24,121.156,0,0
395,1536,50,2,121028.051000,0,35651.6,23526.5,110.813,0,0
395,1536,50,3,121224.517000,0,35725.4,23213,96.1635,0,0
395,1536,50,4,121530.989000,0,35846.8,23238.9,95.9605,0,0
395,1536,50,5,121123.624000,0,35536.4,23338.5,95.288,0,0
395,1536,50,6,122491.259000,0,35934.2,23505.6,126.905,0,0
395,1536,50,7,129777.289000,0,39035.8,23247.1,95.235,0,0
395,1536,50,8,61928.987000,0,23850.2,16185.6,97.8385,0,0
395,1536,50,9,68454.114000,0,26918.9,15774.2,103.217,0,0
395,1536,50,10,40835.146000,0,17141.2,12448.7,95.5335,0,0
395,1536,50,11,48177.829000,0,20610.4,13158.8,124.296,0,0
395,1536,50,12,31545.433000,0,14334.5,9922.14,96.1915,0,0
395,1536,75,2,163533.789000,0,44567.1,35334.6,110.728,0,0
395,1536,75,3,163343.185000,0,44426.2,34954,119.015,0,0
395,1536,75,4,163685.559000,0,44602.9,34900.2,126.303,0,0
395,1536,75,5,164795.224000,0,44603.2,35406.4,126.968,0,0
395,1536,75,6,162652.510000,0,44297.8,34802.4,97.315,0,0
395,1536,75,7,178779.516000,0,50161.7,35114.9,126.595,0,0
395,1536,75,8,83756.372000,0,29947.9,24256.7,98.2155,0,0
395,1536,75,9,96398.197000,0,36712,23590,97.127,0,0
395,1536,75,10,57988.175000,0,23654.1,18428.2,125.07,0,0
395,1536,75,11,68818.150000,0,29991.1,18188.2,96.9635,0,0
395,1536,75,12,42003.151000,0,17775,14694,96.405,0,0
395,1536,100,2,215707.623000,0,58136.8,47241.7,112.882,0,0
395,1536,100,3,215701.805000,0,58649.7,46469.2,96.498,0,0
395,1536,100,4,215631.200000,0,58273.1,46651.6,127.144,0,0
395,1536,100,5,214957.871000,0,58228.6,46443.9,95.4615,0,0
395,1536,100,6,214753.653000,0,58099.9,46515.6,121.511,0,0
395,1536,100,7,244373.639000,0,68436.5,46902.6,96.337,0,0
395,1536,100,8,109519.192000,0,38696.7,32281.3,122.995,0,0
395,1536,100,9,127115.161000,0,47292,31244.6,97.4015,0,0
395,1536,100,10,71945.522000,0,27533.3,24778.6,126.504,0,0
395,1536,100,11,85353.700000,0,35672.4,24044.6,95.6895,0,0
395,1536,100,12,55111.842000,0,23291.1,19433.3,94.121,0,0
395,3072,0,2,26872.547000,0,13162.3,166.284,56.1735,0,0
395,3072,0,3,26564.217000,0,12928.8,8.181,47.486,0,0
395,3072,0,4,26487.477000,0,12888,8.535,48.0445,0,0
395,3072,0,5,26973.539000,0,13134.6,8.309,46.293,0,0
395,3072,0,6,26394.665000,0,12848.8,8.2415,47.061,0,0
395,3072,0,7,14022.548000,0,8768.32,8.4775,60.5085,0,0
395,3072,0,8,13697.947000,0,8621.57,153.849,46.9325,0,0
395,3072,0,9,9707.221000,0,6609.54,105.757,60.517,0,0
395,3072,0,10,9503.312000,0,6526.6,184.97,47.666,0,0
395,3072,0,11,7617.231000,0,5271.83,162.958,60.5485,0,0
395,3072,0,12,7628.278000,0,5256,274.984,60.51,0,0
395,3072,25,2,71211.859000,0,23604.8,11355.3,56.1995,0,0
395,3072,25,3,71920.774000,0,23859.3,11250.6,46.728,0,0
395,3072,25,4,72020.497000,0,23762.3,11406.8,46.956,0,0
395,3072,25,5,72368.342000,0,23831.1,11429.8,61.774,0,0
395,3072,25,6,71797.628000,0,23917.7,11149.9,47.525,0,0
395,3072,25,7,69125.895000,0,23188.4,11231.9,47.0405,0,0
395,3072,25,8,36810.900000,0,15997.1,7896.6,61.3075,0,0
395,3072,25,9,38135.158000,0,16335.9,7955.77,62.2975,0,0
395,3072,25,10,24029.467000,0,11536.7,5962.69,47.545,0,0
395,3072,25,11,26649.585000,0,12634.6,6360.27,61.7525,0,0
395,3072,25,12,18694.162000,0,9575.75,4888,60.9195,0,0
395,3072,50,2,116883.848000,0,34764.7,22503.3,55.8935,0,0
395,3072,50,3,116886.218000,0,34470.3,22598.6,47.2245,0,0
395,3072,50,4,116995.432000,0,34644,22482.7,47.9805,0,0
395,3072,50,5,116973.326000,0,34709.8,22413.2,47.886,0,0
395,3072,50,6,117144.959000,0,34615.5,22476.2,60.538,0,0
395,3072,50,7,125945.148000,0,37792.8,22862,46.798,0,0
395,3072,50,8,59091.993000,0,23128.9,15273.2,61.0265,0,0
395,3072,50,9,66065.443000,0,26182.6,15248.1,47.4025,0,0
395,3072,50,10,39322.208000,0,16746.3,11933.9,61.8925,0,0
395,3072,50,11,44526.376000,0,19889.5,11440.8,60.3665,0,0
395,3072,50,12,30244.211000,0,13878.4,9623.59,47.534,0,0
395,3072,75,2,157327.800000,0,43123.7,33845.2,54.6955,0,0
395,3072,75,3,165011.828000,0,43593.5,36747.6,62.47,0,0
395,3072,75,4,157142.458000,0,42987.6,33612.5,62.4215,0,0
395,3072,75,5,158664.773000,0,43048.7,34261.2,62.1855,0,0
395,3072,75,6,157026.916000,0,42962.5,33645.9,47.453,0,0
395,3072,75,7,171824.043000,0,48493.4,33591.1,47.635,0,0
395,3072,75,8,79405.198000,0,28806.5,22773,47.215,0,0
395,3072,75,9,92588.816000,0,35591.6,22559.9,47.1035,0,0
395,3072,75,10,55016.598000,0,22849,17367.4,47.9025,0,0
395,3072,75,11,65758.861000,0,28843.9,17252,60.8035,0,0
395,3072,75,12,39894.922000,0,17221.5,13800.9,47.218,0,0
395,3072,100,2,207184.106000,0,56160.3,45161,54.8125,0,0
395,3072,100,3,207340.315000,0,56390.7,44823,54.621,0,0
395,3072,100,4,207230.268000,0,56311.9,44794.5,62.06,0,0
395,3072,100,5,208577.492000,0,56347.9,45306.3,48.174,0,0
395,3072,100,6,210477.151000,0,56238.5,46406.6,61.7365,0,0
395,3072,100,7,234721.764000,0,66388.5,44737.5,46.878,0,0
395,3072,100,8,107391.687000,0,37861.8,31965.7,61.868,0,0
395,3072,100,9,122777.291000,0,45750.6,30344.8,61.0135,0,0
395,3072,100,10,68505.599000,0,26834.7,23190.4,47.6525,0,0
395,3072,100,11,81923.968000,0,34563.4,22943.9,47.6005,0,0
395,3072,100,12,52686.818000,0,22561.4,18458.5,61.7225,0,0
395,6144,0,2,52646.173000,0,26055.8,162.622,53.7855,0,0
395,6144,0,3,51865.699000,0,25586.9,8.1235,47.26,0,0
395,6144,0,4,52719.289000,0,26007.5,8.4525,48.8345,0,0
395,6144,0,5,52824.576000,0,26001.4,8.412,60.6405,0,0
395,6144,0,6,52159.810000,0,25733.1,8.3835,47.47,0,0
395,6144,0,7,27195.013000,0,17511.8,8.3365,60.428,0,0
395,6144,0,8,26960.570000,0,17362.8,175.717,60.9345,0,0
395,6144,0,9,18220.886000,0,13071.8,108.053,46.904,0,0
395,6144,0,10,18473.349000,0,13118.3,205.686,61.282,0,0
395,6144,0,11,14162.633000,0,10575.7,161.231,60.863,0,0
395,6144,0,12,14251.578000,0,10432,357.43,59.271,0,0
395,6144,25,2,143234.640000,0,47576.2,22816.9,54.612,0,0
395,6144,25,3,142700.374000,0,47549,22427.9,54.131,0,0
395,6144,25,4,144093.301000,0,47766,22894.1,47.2235,0,0
395,6144,25,5,142568.144000,0,47468.7,22456.2,47.3005,0,0
395,6144,25,6,142883.159000,0,47693.2,22359.2,48.0195,0,0
395,6144,25,7,137259.479000,0,46025.7,22459.1,47.592,0,0
395,6144,25,8,72914.816000,0,31737.7,15831.6,61.532,0,0
395,6144,25,9,74231.822000,0,32429.4,15145.8,61.732,0,0
395,6144,25,10,47633.143000,0,23075.4,11812.5,62.9725,0,0
395,6144,25,11,51415.062000,0,25182.4,11555.7,62.3525,0,0
395,6144,25,12,36392.771000,0,18977.3,9442.9,63.0235,0,0
395,6144,50,2,233519.663000,0,69502.4,45023.6,54.4095,0,0
395,6144,50,3,237842.940000,0,70316.9,46050.8,60.5825,0,0
395,6144,50,4,233899.059000,0,69671.1,44800.2,47.7005,0,0
395,6144,50,5,233930.987000,0,69678.5,44787.7,61.253,0,0
395,6144,50,6,234587.807000,0,69947.5,44873,60.4625,0,0
395,6144,50,7,248829.998000,0,75437.4,44873.1,61.3355,0,0
395,6144,50,8,117801.006000,0,46371,30419,47.6565,0,0
395,6144,50,9,130824.120000,0,52059.1,30181.6,47.1975,0,0
395,6144,50,10,77157.924000,0,33326.8,23168.8,46.9605,0,0
395,6144,50,11,89486.626000,0,39728.7,23671.6,61.1265,0,0
395,6144,50,12,58907.682000,0,27600,18393.3,46.784,0,0
395,6144,75,2,313490.290000,0,85936.8,67457.3,54.4225,0,0
395,6144,75,3,313433.715000,0,86014.5,67222.9,47.097,0,0
395,6144,75,4,314087.787000,0,85942.4,67567.6,62.1975,0,0
395,6144,75,5,313537.377000,0,86216.3,67077.4,47.503,0,0
395,6144,75,6,312888.875000,0,86003.2,66893.3,62.8505,0,0
395,6144,75,7,345363.778000,0,97298.8,68111.6,46.5335,0,0
395,6144,75,8,158294.241000,0,57476.7,45587.4,47.8705,0,0
395,6144,75,9,185655.887000,0,71854.9,45039.2,60.393,0,0
395,6144,75,10,109428.414000,0,45720.7,34470.7,46.95,0,0
395,6144,75,11,130927.219000,0,57798.9,34477.1,59.6395,0,0
395,6144,75,12,79913.556000,0,34445.8,27893.8,47.243,0,0
395,6144,100,2,413164.963000,0,112767,89372.1,56.2135,0,0
395,6144,100,3,413604.145000,0,112415,89828.9,48.997,0,0
395,6144,100,4,416246.279000,0,112969,90463.5,62.5615,0,0
395,6144,100,5,413932.216000,0,112771,89613.7,48.4495,0,0
395,6144,100,6,415350.281000,0,113553,89561.9,58.7405,0,0
395,6144,100,7,469647.367000,0,132644,89843,59.0625,0,0
395,6144,100,8,209013.667000,0,75375.5,60801.5,50.1125,0,0
395,6144,100,9,244350.339000,0,91738.8,59953,49.2285,0,0
395,6144,100,10,136801.526000,0,53672.1,46479.6,61.5315,0,0
395,6144,100,11,162888.572000,0,68900.4,45662.3,47.541,0,0
395,6144,100,12,105252.654000,0,45188,37002.4,47.4885,0,0
296,6,0,4,2167.595000,0,208.433,23.9605,143.827,21.082,0
296,6,0,5,2439.423000,0,213.586,28.311,149.557,21.372,0
296,6,0,6,1942.576000,0,203.084,20.349,137.555,21.0825,0
296,6,0,7,2022.726000,0,259.771,20.432,123.043,21.253,0
296,6,0,8,2142.746000,0,196.189,323.928,144.499,21.119,0
296,6,0,9,2321.999000,0,335.419,259.803,148.952,30.836,0
296,6,0,10,2169.289000,0,173.462,396.98,150.678,21.054,0
296,6,0,11,2307.424000,0,316.123,332.906,149.622,21.134,0
296,6,0,12,1795.157000,0,142.024,355.307,123.204,21.1055,0
296,6,25,4,2285.629000,0,209.739,26.846,149.883,21.1025,0
296,6,25,5,1866.052000,0,202.623,19.993,124.285,21.1025,0
296,6,25,6,2274.594000,0,209.708,27.1155,148.783,21.105,0
296,6,25,7,2224.541000,0,270.062,20.649,148.469,25.6425,0
296,6,25,8,2390.197000,0,212.454,379.956,149.514,20.981,0
296,6,25,9,2074.641000,0,298.575,235.705,130.153,21.202,0
296,6,25,10,1818.748000,0,152.556,384.849,123.459,21.1415,0
296,6,25,11,2316.539000,0,287.975,364.043,149.601,21.4105,0
296,6,25,12,1781.043000,0,142.006,342.45,122.001,20.7535,0
296,6,50,4,2014.602000,0,206.159,21.901,133.551,20.978,0
296,6,50,5,1870.134000,0,201.521,20.149,123.578,20.986,0
296,6,50,6,1992.582000,0,201.507,20.228,144.994,21.043,0
296,6,50,7,2383.376000,0,321.192,20.489,160.692,20.9555,0
296,6,50,8,2467.223000,0,214.118,422.809,162.688,29.6395,0
296,6,50,9,2550.127000,0,349.226,269.951,156.342,21.576,0
296,6,50,10,1817.832000,0,152.696,383.949,122.969,20.9005,0
296,6,50,11,1924.726000,0,243.749,325.453,123.378,21.0875,0
296,6,50,12,2147.280000,0,141.815,413.119,157.448,21.9565,0
296,6,75,4,1911.029000,0,203.679,20.685,126.033,21.195,0
296,6,75,5,2033.206000,0,201.807,20.3065,148.335,26.5855,0
296,6,75,6,1870.558000,0,202.026,20.296,123.306,21.1345,0
296,6,75,7,2252.442000,0,298.933,20.392,155.126,21.123,0
296,6,75,8,2059.660000,0,169.905,297.424,148.617,20.997,0
296,6,75,9,1964.024000,0,289.172,240.342,123.493,20.857,0
296,6,75,10,1812.677000,0,152.443,385.419,122.712,35.532,0
296,6,75,11,2664.906000,0,301.445,455.671,166.872,21.3785,0
296,6,75,12,2186.124000,0,163.497,402.61,151.497,20.9935,0
296,6,100,4,1875.456000,0,203.897,20.082,123.093,21.0815,0
296,6,100,5,2088.430000,0,263.147,20.0535,139.697,27.8635,0
296,6,100,6,2025.772000,0,202.41,20.246,147.042,20.834,0
296,6,100,7,2101.731000,0,263.643,20.754,130.333,21.0475,0
296,6,100,8,2165.377000,0,206.664,336.814,146.707,21.477,0
296,6,100,9,2339.735000,0,316.249,286.008,150.048,21.7535,0
296,6,100,10,1792.557000,0,152.737,380.99,121.489,25.008,0
296,6,100,11,2125.411000,0,253.808,347.264,127.794,21.0575,0
296,6,100,12,1786.521000,0,141.905,356.929,123.145,20.956,0
296,12,0,4,2377.574000,0,262.837,26.289,149.966,21.1275,0
296,12,0,5,1976.330000,0,256.156,20.1315,123.143,21.182,0
296,12,0,6,1911.162000,0,255.359,20.3255,118.811,20.965,0
296,12,0,7,2068.891000,0,296.223,20.475,122.727,21.007,0
296,12,0,8,2175.988000,0,206.296,309.623,149.792,24.926,0
296,12,0,9,2001.385000,0,315.808,232.198,123.266,20.9945,0
296,12,0,12,2230.622000,0,176.501,437.939,149.371,21.2705,0
296,12,25,4,2041.169000,0,279.898,53.523,123.978,21.046,0
296,12,25,5,2258.942000,0,310.271,57.1845,129.802,25.942,0
296,12,25,6,2030.038000,0,279.575,53.6455,123.298,21.074,0
296,12,25,7,2471.144000,0,390.53,54.4355,149.488,21.2595,0
296,12,25,8,2285.957000,0,277.457,330.193,133.712,21,0
296,12,25,9,2436.092000,0,364.712,276.821,148.623,20.9265,0
296,12,25,10,1857.518000,0,191.264,403.375,122.992,21.0525,0
296,12,25,11,2055.139000,0,285.7,336.471,125.976,22.1315,0
296,12,25,12,2345.056000,0,171.837,411.184,158.916,21.3675,0
296,12,50,4,2729.816000,0,365.191,149.908,163.809,21.1965,0
296,12,50,5,2646.531000,0,359.433,147.76,149.76,20.965,0
296,12,50,6,2661.120000,0,360.836,148.569,150.639,24.2325,0
296,12,50,7,2945.635000,0,510.713,136.766,150.927,22.146,0
296,12,50,8,2169.633000,0,246.062,353.43,148.399,20.7055,0
296,12,50,9,2468.638000,0,407.314,344.552,150.472,27.5755,0
296,12,50,10,2272.241000,0,212.792,513.991,150.326,21.1465,0
296,12,50,11,2417.994000,0,397.976,391.617,149.091,26.3915,0
296,12,50,12,2237.434000,0,189.726,472.588,149.952,20.949,0
296,12,75,4,2663.116000,0,376.285,185.513,150.965,21.0705,0
296,12,75,5,2687.907000,0,380.646,186.207,157.409,21.046,0
296,12,75,6,2378.039000,0,361.985,146.247,146.111,35.67,0
296,12,75,7,2497.705000,0,441.783,149.619,122.78,20.98,0
296,12,75,8,2474.300000,0,314.077,434.726,149.267,20.742,0
296,12,75,9,2168.580000,0,388.855,318.248,124.974,21.123,0
296,12,75,10,2412.775000,0,249.298,503.934,149.609,21.3125,0
296,12,75,11,2413.592000,0,403.581,393.718,146.419,24.9895,0
296,12,75,12,1931.671000,0,200.037,405.75,125.792,21.04,0
296,12,100,4,3108.467000,0,509.651,270.945,149.188,21.1095,0
296,12,100,5,2455.797000,0,412.478,207.038,124.709,21.083,0
296,12,100,6,2585.722000,0,414.991,214.117,148.209,21.109,0
296,12,100,7,2943.929000,0,536.915,221.796,139.368,24.3075,0
296,12,100,8,2047.510000,0,297.619,392.037,123.075,20.938,0
296,12,100,10,2464.423000,0,261.636,568.241,162.742,21.039,0
296,12,100,11,2607.742000,0,532.264,407.797,154.05,21.047,0
296,12,100,12,2399.687000,0,246.952,577.759,150.234,21.211,0
296,24,0,4,2612.382000,0,378.723,25.9225,151.471,20.972,0
296,24,0,5,2572.117000,0,366.172,26.1675,150.196,21.098,0
296,24,0,6,2179.630000,0,357.509,20.2545,122.99,21.1885,0
296,24,0,7,2478.815000,0,378.84,20.717,146.57,21.2895,0
296,24,0,8,2286.277000,0,275.952,310.388,150.682,20.9585,0
296,24,0,9,2572.142000,0,421.617,261.918,148.605,26.444,0
296,24,0,10,2255.053000,0,261.964,393.177,150.385,21.1835,0
296,24,0,11,2215.493000,0,337.088,327.862,130.406,21.0575,0
296,24,25,4,2458.544000,0,464.728,147.089,123.479,24.206,0
296,24,25,5,2444.523000,0,465.065,145.324,122.942,21.3555,0
296,24,25,6,2457.530000,0,465.2,146.365,124.316,21.311,0
296,24,25,7,2784.142000,0,521.917,148.248,148.584,25.191,0
296,24,25,8,2464.267000,0,340.027,432.039,157.346,20.936,0
296,24,25,9,2691.947000,0,516.38,327.22,146.886,50.6415,0
296,24,25,10,2099.760000,0,273.626,453.781,124.344,21.254,0
296,24,25,11,2595.309000,0,472.84,433.349,149.4,22.2885,0
296,24,25,12,2289.281000,0,240.969,514.527,149.629,21.1195,0
296,24,50,4,3496.782000,0,628.423,382.375,151.405,79.782,0
296,24,50,5,3274.552000,0,618.444,297.431,165.314,21.238,0
296,24,50,6,3150.460000,0,618.594,297.709,150.232,21.007,0
296,24,50,7,3527.156000,0,704.101,302.496,143.94,27.936,0
296,24,50,8,2578.362000,0,431.698,519.166,149.42,36.1215,0
296,24,50,9,2870.876000,0,613.847,486.164,150.933,21.111,0
296,24,50,10,2297.944000,0,332.506,540.166,124.566,20.9665,0
296,24,50,11,2655.259000,0,528.508,495.89,149.053,21.5805,0
296,24,50,12,1972.248000,0,280.94,466.997,123.725,21.154,0
296,24,75,4,3520.288000,0,707.76,427.021,126.173,21.003,0
296,24,75,5,3484.365000,0,705.032,420.515,125.311,21.169,0
296,24,75,6,3696.821000,0,716.06,449.276,128.873,21.1385,0
296,24,75,7,3944.884000,0,828.902,424.154,164.206,28,0
296,24,75,8,2754.628000,0,524.252,610.071,140.056,20.8265,0
296,24,75,10,2300.420000,0,397.573,600.317,135.604,25.8515,0
296,24,75,12,2518.863000,0,344.578,654.145,148.561,21.299,0
296,24,100,4,4163.042000,0,880.243,570.833,126.361,20.7205,0
296,24,100,5,4790.938000,0,885.802,757.38,152.158,21.134,0
296,24,100,6,4794.262000,0,883.966,755.001,153.935,21.1545,0
296,24,100,7,5235.464000,0,1136.55,657.147,134.085,22.2385,0
296,24,100,8,2763.382000,0,598.348,648.629,119.129,21.012,0
296,24,100,9,3071.402000,0,820.487,587.534,124.422,21.2185,0
296,24,100,10,2733.417000,0,463.302,799.485,150.754,21.142,0
296,24,100,11,2647.591000,0,701.148,594.99,124.484,20.94,0
296,24,100,12,2766.333000,0,399.155,713.945,150.336,21.24,0
296,48,0,4,2928.987000,0,569.589,24.344,149.525,27.2415,0
296,48,0,5,2772.513000,0,620.377,21.4675,127.181,20.8865,0
296,48,0,6,2613.040000,0,567.212,20.415,123.625,21.065,0
296,48,0,7,2501.607000,0,513.561,20.341,141.375,24.9745,0
296,48,0,8,2482.947000,0,416.829,312.927,148.322,21.3475,0
296,48,0,9,2242.243000,0,484.791,233.081,124.788,20.8685,0
296,48,0,10,2370.583000,0,336.01,407.907,149.638,21.36,0
296,48,0,11,2546.219000,0,444.547,371.653,161.449,22.59,0
296,48,0,12,2426.315000,0,323.855,472.452,150.144,21.1485,0
296,48,25,4,3875.660000,0,849.037,384.248,143.697,20.954,0
296,48,25,5,3796.574000,0,894.511,328.192,160.457,21.153,0
296,48,25,6,3729.665000,0,869.215,329.31,125.837,20.6905,0
296,48,25,7,4027.759000,0,1065.83,330.626,149.946,21.4615,0
296,48,25,9,3127.632000,0,831.382,453.934,149.599,23.8855,0
296,48,25,10,2584.322000,0,455.558,642.798,151.88,21.122,0
296,48,25,11,2602.869000,0,638.221,481.307,132.059,21.1555,0
296,48,25,12,2578.430000,0,406.504,641.79,145.517,20.927,0
296,48,50,4,4936.827000,0,1170.37,663.071,127.876,24.1735,0
296,48,50,5,4978.724000,0,1188.34,667.3,125.529,24.6475,0
296,48,50,6,4980.711000,0,1177.91,665.42,127.532,21.01,0
296,48,50,7,5490.194000,0,1318.17,670.45,152.841,24.2385,0
296,48,50,8,3189.222000,0,802.358,725.923,124.672,44.7875,0
296,48,50,9,3591.576000,0,1035.28,635.447,150.814,22.003,0
296,48,50,10,2830.721000,0,592.641,762.766,160.635,21.0195,0
296,48,50,11,3131.171000,0,857.455,655.783,149.838,34.232,0
296,48,50,12,2630.519000,0,488.729,677.125,162.625,21.36,0
296,48,75,2,,,,,,,
296,48,75,4,6472.297000,0,1519.23,1037.57,132.116,21.043,0
296,48,75,5,7079.681000,0,1416.14,1330.76,158.523,21.219,0
296,48,75,6,6987.616000,0,1439.46,1216.01,158.691,21.065,0
296,48,75,7,6662.871000,0,1618.55,981.86,129.414,20.952,0
296,48,75,8,3733.239000,0,950.744,911.158,126.18,21.065,0
296,48,75,9,4223.094000,0,1254.77,860.717,149.961,21.7985,0
296,48,75,10,3319.058000,0,773.842,1016.62,151.116,22.236,0
296,48,75,11,3524.400000,0,1071.28,830.104,143.725,23.225,0
296,48,75,12,2474.143000,0,588.644,760.817,124.145,21.087,0
296,48,100,4,8247.039000,0,1816.95,1522.27,160.268,20.9525,0
296,48,100,5,7792.519000,0,1830.16,1315.67,154.669,21.2735,0
296,48,100,6,8218.423000,0,1816.93,1515.1,158.361,21.157,0
296,48,100,7,8595.983000,0,2167.6,1316.78,147.582,23.004,0
296,48,100,8,5144.602000,0,1251.75,1378.85,154.194,29.5815,0
296,48,100,9,5139.506000,0,1595.82,1058.36,154.463,20.9765,0
296,48,100,10,3481.670000,0,885.771,1071.07,150.617,20.7685,0
296,48,100,11,3819.668000,0,1251.99,955.032,126.272,21.849,0
296,96,0,4,3916.890000,0,988.384,28.161,164.136,21.111,0
296,96,0,5,3473.807000,0,987.515,20.386,127.833,20.829,0
296,96,0,6,3420.958000,0,966.232,20.6155,123.75,20.9995,0
296,96,0,7,3068.482000,0,824.084,20.52,147.325,23.3985,0
296,96,0,8,2802.799000,0,695.052,272.028,145.048,29.022,0
296,96,0,9,2764.720000,0,702.697,274.656,144.776,21.179,0
296,96,0,11,2679.470000,0,607.657,323.153,149.09,21.208,0
296,96,0,12,2595.854000,0,454.584,391.021,148.308,20.8145,0
296,96,25,4,6050.414000,0,1668.57,710.961,129.457,22.176,0
296,96,25,5,6102.034000,0,1668.76,710.426,129.181,21.2145,0
296,96,25,6,5890.289000,0,1609.53,698.372,127.407,21.0745,0
296,96,25,7,6307.057000,0,1701.17,762.371,149.841,21.1245,0
296,96,25,8,3826.138000,0,1095.43,748.59,151.473,20.735,0
296,96,25,9,3744.576000,0,1224.4,667.883,125.02,21.1885,0
296,96,25,11,3450.899000,0,1069.48,679.522,151.481,21.4345,0
296,96,25,12,3072.175000,0,679.92,763.91,149.459,20.99,0
296,96,50,4,8754.022000,0,2293.21,1408.8,130.277,21.071,0
296,96,50,5,8779.815000,0,2316.02,1401.69,129.975,21.3245,0
296,96,50,6,8800.482000,0,2297.21,1389.85,157.856,21.225,0
296,96,50,7,9360.361000,0,2527.39,1400.04,147.625,23.6675,0
296,96,50,8,5606.278000,0,1580.93,1428.16,170.665,21.127,0
296,96,50,9,5489.518000,0,1844.08,1127.59,128.146,21.252,0
296,96,50,10,4138.844000,0,1152.43,1277.25,153.444,21.0785,0
296,96,50,11,4392.435000,0,1586.15,999.139,137.342,22.1155,0
296,96,50,12,3555.583000,0,995.244,1102.84,151.234,21.25,0
296,96,75,4,11766.566000,0,2789.73,2273.06,159.567,21.2405,0
296,96,75,5,12720.538000,0,2933.6,2542.11,164.493,38.9685,0
296,96,75,6,11237.223000,0,2790.98,2073.67,133.588,20.949,0
296,96,75,7,12222.427000,0,3170.72,2085.8,150.446,22.38,0
296,96,75,8,6686.717000,0,1962.27,1764.11,158.473,20.845,0
296,96,75,9,7283.240000,0,2431.39,1584.26,157.697,24.05,0
296,96,75,10,5082.715000,0,1512.42,1633.22,155.946,21.2195,0
296,96,75,12,4143.521000,0,1231.85,1387.65,154.032,30.1835,0
1 395 6 0 2 1345.023000 0 202.585 271.173 98.4515 0 0
2 395 6 0 3 1753.742000 0 203.613 19.966 91.0985 0 0
3 395 6 0 4 2168.114000 0 211.21 26.232 117.512 0 0
4 395 6 0 5 1755.362000 0 202.993 20.585 89.884 0 0
5 395 6 0 6 2125.772000 0 208.668 25.811 112.805 0 0
6 395 6 0 7 1969.016000 0 279.401 20.407 100.743 0 0
7 395 6 0 8 1627.819000 0 168.995 255.474 90.7445 0 0
8 395 6 0 9 2119.303000 0 332.761 232.937 114.57 0 0
9 395 6 0 10 1888.811000 0 153.595 389.827 110.996 0 0
10 395 6 0 11 2246.655000 0 297.274 330.961 117.38 0 0
11 395 6 0 12 1614.087000 0 141.651 314.245 91.072 0 0
12 395 6 25 2 1358.991000 0 202.525 273.299 100.713 0 0
13 395 6 25 3 2243.092000 0 212.773 28.241 117.468 0 0
14 395 6 25 4 1745.402000 0 202.637 20.0945 90.533 0 0
15 395 6 25 5 2150.073000 0 208.975 26.11 116.733 0 0
16 395 6 25 6 1874.124000 0 201.836 20.1915 115.683 0 0
17 395 6 25 7 2197.299000 0 320.107 20.3105 116.736 0 0
18 395 6 25 8 1874.740000 0 169.439 273.463 115.393 0 0
19 395 6 25 9 1800.494000 0 286.907 207.546 91.752 0 0
20 395 6 25 10 2062.456000 0 171.823 369.409 116.871 0 0
21 395 6 25 11 2094.266000 0 288.113 314.761 116.597 0 0
22 395 6 25 12 1621.195000 0 142.197 311.018 91.068 0 0
23 395 6 50 2 1350.909000 0 203.326 272.78 98.027 0 0
24 395 6 50 3 2124.760000 0 209.196 25.4635 111.555 0 0
25 395 6 50 4 2137.857000 0 212.747 25.4855 115.766 0 0
26 395 6 50 5 1739.711000 0 202.653 20.169 90.6985 0 0
27 395 6 50 6 2227.316000 0 212.291 28.401 117.737 0 0
28 395 6 50 7 1976.772000 0 282.14 20.2575 101.45 0 0
29 395 6 50 8 1963.044000 0 170.618 293.566 116.48 0 0
30 395 6 50 9 2165.618000 0 322.922 261.868 116.678 0 0
31 395 6 50 10 1949.472000 0 152.686 382.245 115.002 0 0
32 395 6 50 11 2276.553000 0 315.105 314.741 117.215 0 0
33 395 6 50 12 1955.101000 0 141.803 378.732 116.056 0 0
34 395 6 75 2 1346.670000 0 203.429 270.659 98.0795 0 0
35 395 6 75 3 1747.437000 0 202.597 19.9695 90.4655 0 0
36 395 6 75 4 1742.203000 0 201.253 20.054 91.1335 0 0
37 395 6 75 5 1730.250000 0 201.376 20.157 90.4905 0 0
38 395 6 75 6 1734.936000 0 200.357 20.2025 90.947 0 0
39 395 6 75 7 1877.662000 0 259.433 20.2445 91.433 0 0
40 395 6 75 8 1632.848000 0 170.694 254.632 90.804 0 0
41 395 6 75 9 2142.006000 0 332.026 235.69 117.002 0 0
42 395 6 75 10 1764.884000 0 152.321 341.581 91.932 0 0
43 395 6 75 11 1771.415000 0 247.91 289.915 93.298 0 0
44 395 6 75 12 1948.118000 0 142.015 378.803 116.114 0 0
45 395 6 100 2 1353.227000 0 202.975 273.389 98.5045 0 0
46 395 6 100 3 1943.074000 0 206.391 22.603 105.864 0 0
47 395 6 100 4 1750.669000 0 202.196 20.072 90.8585 0 0
48 395 6 100 5 1741.931000 0 202.938 20.2425 90.7695 0 0
49 395 6 100 6 2320.943000 0 236.828 26.407 116.434 0 0
50 395 6 100 7 2169.722000 0 332.258 20.7225 115.994 0 0
51 395 6 100 8 1883.336000 0 169.9 275.065 116.151 0 0
52 395 6 100 9 2262.878000 0 321.533 269.454 116.687 0 0
53 395 6 100 10 2089.755000 0 174.817 396.923 116.327 0 0
54 395 6 100 11 2072.984000 0 284.653 307.649 115.929 0 0
55 395 6 100 12 1933.103000 0 141.931 396.071 115.296 0 0
56 395 12 0 2 1459.816000 0 256.55 270.888 100.083 0 0
57 395 12 0 3 1855.136000 0 255.11 19.942 91.0025 0 0
58 395 12 0 4 1856.482000 0 257.083 19.9715 91.4165 0 0
59 395 12 0 5 1842.013000 0 254.205 20.0645 91.7935 0 0
60 395 12 0 6 2119.404000 0 261.396 20.4175 115.755 0 0
61 395 12 0 7 2071.853000 0 305.62 20.3225 92.664 0 0
62 395 12 0 8 2091.085000 0 239.699 308.85 110.613 0 0
63 395 12 0 9 2313.498000 0 346.951 270.045 116.869 0 0
64 395 12 0 10 2118.630000 0 200.645 408.819 107.953 0 0
65 395 12 0 11 2193.711000 0 367.302 306.431 115.568 0 0
66 395 12 0 12 1971.534000 0 164.029 387.061 115.01 0 0
67 395 12 25 2 1575.580000 0 280.287 311.332 98.4815 0 0
68 395 12 25 3 1911.666000 0 280.776 53.9105 91.1425 0 0
69 395 12 25 4 2309.115000 0 289.176 63.4615 118.216 0 0
70 395 12 25 5 2392.366000 0 295.926 67.044 117.675 0 0
71 395 12 25 6 1901.884000 0 279.655 53.6755 90.836 0 0
72 395 12 25 7 2490.346000 0 401.991 57.094 116.903 0 0
73 395 12 25 8 2000.497000 0 220.075 311.813 116.262 0 0
74 395 12 25 9 2117.957000 0 346.028 247.361 114.8 0 0
75 395 12 25 10 2083.278000 0 189.492 404.057 115.927 0 0
76 395 12 25 11 2178.739000 0 357.125 315.398 117.589 0 0
77 395 12 25 12 2113.941000 0 172.639 412.838 116.718 0 0
78 395 12 50 2 1831.881000 0 336.504 377.716 100.564 0 0
79 395 12 50 3 2618.202000 0 362.998 153.403 118.133 0 0
80 395 12 50 4 2638.342000 0 367.927 153.945 118.601 0 0
81 395 12 50 5 2189.668000 0 338.558 115.245 116.657 0 0
82 395 12 50 6 2828.621000 0 438.284 153.238 119.006 0 0
83 395 12 50 7 2564.292000 0 474.558 119.538 117.775 0 0
84 395 12 50 8 1749.003000 0 246.536 322.999 90.5255 0 0
85 395 12 50 9 2229.410000 0 414.233 264.009 116.862 0 0
86 395 12 50 10 1947.524000 0 210.022 451.354 111.487 0 0
87 395 12 50 11 1892.300000 0 356.357 342.917 90.8285 0 0
88 395 12 50 12 2043.720000 0 189.188 458.22 115.434 0 0
89 395 12 75 2 1934.387000 0 359.569 406.311 99.3245 0 0
90 395 12 75 3 2196.645000 0 365.16 149.712 94.4875 0 0
91 395 12 75 4 2148.053000 0 359.089 145.446 91.9305 0 0
92 395 12 75 5 2843.611000 0 394.076 197.897 118.239 0 0
93 395 12 75 6 2240.015000 0 360.029 145.29 115.017 0 0
94 395 12 75 7 2544.315000 0 451.839 148.829 115.883 0 0
95 395 12 75 8 2010.329000 0 264.64 371.928 109.544 0 0
96 395 12 75 9 2384.461000 0 426.098 369.991 117.764 0 0
97 395 12 75 10 2044.359000 0 220.811 449.402 115.651 0 0
98 395 12 75 11 2257.906000 0 404.955 377.139 116.907 0 0
99 395 12 75 12 2050.492000 0 209.268 465.545 114.226 0 0
100 395 12 100 2 2183.960000 0 413.747 471.578 99.828 0 0
101 395 12 100 3 2384.107000 0 414.24 207.152 92.1115 0 0
102 395 12 100 4 2390.608000 0 414.932 208.192 92.178 0 0
103 395 12 100 5 2371.224000 0 413.609 205.725 91.5325 0 0
104 395 12 100 6 2430.153000 0 413.137 206.739 110.08 0 0
105 395 12 100 7 2950.801000 0 619.575 210.355 119.503 0 0
106 395 12 100 8 2110.008000 0 316.819 419.015 99.909 0 0
107 395 12 100 9 2084.115000 0 446.287 316.394 91.3055 0 0
108 395 12 100 10 1991.115000 0 242.015 471.864 110.037 0 0
109 395 12 100 11 2234.590000 0 484.443 388.117 108.035 0 0
110 395 12 100 12 1725.536000 0 214.17 403.38 90.7875 0 0
111 395 24 0 2 1639.989000 0 361.32 261.448 96.1615 0 0
112 395 24 0 3 2103.166000 0 361.404 20.5875 95.8795 0 0
113 395 24 0 4 2552.327000 0 368.114 28.1075 117.957 0 0
114 395 24 0 5 2092.099000 0 360.619 20.7075 92.7235 0 0
115 395 24 0 6 2441.577000 0 364.633 25.1985 117.599 0 0
116 395 24 0 7 2192.649000 0 371.917 20.7245 114.137 0 0
117 395 24 0 8 1806.898000 0 274.921 257.5 93.3315 0 0
118 395 24 0 9 2269.505000 0 396.648 264.187 117.551 0 0
119 395 24 0 10 2094.279000 0 232.62 408.463 116.891 0 0
120 395 24 0 11 2238.497000 0 340.524 304.963 109.248 0 0
121 395 24 0 12 2205.452000 0 239.805 495.966 117.336 0 0
122 395 24 25 2 2155.785000 0 466.01 409.369 99.792 0 0
123 395 24 25 3 2564.785000 0 472.307 163.425 106.711 0 0
124 395 24 25 4 2352.598000 0 462.248 145.54 90.8185 0 0
125 395 24 25 5 2691.712000 0 541.11 145.546 116.161 0 0
126 395 24 25 6 2349.938000 0 465.716 145.136 91.518 0 0
127 395 24 25 7 2516.958000 0 513.955 150.137 92.705 0 0
128 395 24 25 8 2228.725000 0 337.289 390.245 117.193 0 0
129 395 24 25 9 2536.317000 0 483.204 401.781 117.116 0 0
130 395 24 25 10 1853.631000 0 273.091 409.64 91.0685 0 0
131 395 24 25 11 2305.174000 0 449.946 364.938 117.185 0 0
132 395 24 25 12 2133.613000 0 266.577 436.579 117.654 0 0
133 395 24 50 2 2788.651000 0 622.232 560.378 100.781 0 0
134 395 24 50 3 3002.032000 0 616.279 304.106 94.465 0 0
135 395 24 50 4 2979.269000 0 619.744 298.183 86.167 0 0
136 395 24 50 5 3911.775000 0 744.535 422.398 119.721 0 0
137 395 24 50 6 3734.809000 0 663.143 424.494 119.205 0 0
138 395 24 50 7 3207.107000 0 694.677 304.169 92.934 0 0
139 395 24 50 8 2341.337000 0 422.753 465.513 116.27 0 0
140 395 24 50 9 2583.974000 0 606.853 385.032 117.368 0 0
141 395 24 50 10 1921.594000 0 328.551 493.656 90.1475 0 0
142 395 24 50 11 2423.060000 0 524.351 442.365 116.548 0 0
143 395 24 50 12 1954.706000 0 280.921 451.563 105.714 0 0
144 395 24 75 2 3216.203000 0 705.956 684.863 100.554 0 0
145 395 24 75 3 3486.686000 0 707.48 442.225 95.992 0 0
146 395 24 75 4 3461.625000 0 712.72 427.823 93.5945 0 0
147 395 24 75 5 3491.883000 0 710.457 419.631 115.398 0 0
148 395 24 75 6 3414.774000 0 709.226 418.217 93.8745 0 0
149 395 24 75 7 3940.430000 0 831.238 453.488 118.057 0 0
150 395 24 75 8 2523.119000 0 486.478 545.73 115.263 0 0
151 395 24 75 9 2598.430000 0 672.334 467.318 91.473 0 0
152 395 24 75 10 2022.882000 0 385.558 548.338 91.7565 0 0
153 395 24 75 11 2669.803000 0 616.729 551.766 117.411 0 0
154 395 24 75 12 1869.334000 0 316.055 485.743 90.991 0 0
155 395 24 100 2 3901.148000 0 880.812 845.36 100.38 0 0
156 395 24 100 3 4209.905000 0 878.051 612.71 100.392 0 0
157 395 24 100 4 4091.569000 0 880.901 573.893 93.173 0 0
158 395 24 100 5 4723.892000 0 886.93 748.231 121.987 0 0
159 395 24 100 6 4483.694000 0 947.258 589.345 117.085 0 0
160 395 24 100 7 4913.337000 0 1118.15 625.77 98.1235 0 0
161 395 24 100 8 2698.333000 0 598.168 646.053 92.0685 0 0
162 395 24 100 9 3057.743000 0 826.737 561.307 93.2605 0 0
163 395 24 100 10 2833.499000 0 543.723 864.376 117.304 0 0
164 395 24 100 11 2505.900000 0 708.572 549.437 92.18 0 0
165 395 24 100 12 2344.725000 0 404.533 611.834 117.076 0 0
166 395 48 0 2 2095.854000 0 569.083 276.4 100.256 0 0
167 395 48 0 3 2799.754000 0 577.141 22.8845 114.755 0 0
168 395 48 0 4 2468.906000 0 570.944 20.086 87.2395 0 0
169 395 48 0 5 2718.553000 0 620.623 20.2595 93.9965 0 0
170 395 48 0 6 2616.546000 0 572.371 20.2305 116.056 0 0
171 395 48 0 7 2424.077000 0 516.08 20.3585 117.131 0 0
172 395 48 0 8 2317.988000 0 422.206 283.664 116.859 0 0
173 395 48 0 9 2339.575000 0 499.439 223.398 116.187 0 0
174 395 48 0 10 1889.101000 0 336.449 337.611 91.3935 0 0
175 395 48 0 11 2339.764000 0 456.289 326.211 117.239 0 0
176 395 48 0 12 2122.507000 0 290.271 370.542 115.793 0 0
177 395 48 25 2 3334.013000 0 850.559 600.955 103.394 0 0
178 395 48 25 3 4056.468000 0 850.09 454.216 119.842 0 0
179 395 48 25 4 3583.026000 0 851.181 348.187 97.13 0 0
180 395 48 25 5 3516.397000 0 850.199 329.606 93.896 0 0
181 395 48 25 6 3520.944000 0 860.391 326.797 92.342 0 0
182 395 48 25 7 3662.449000 0 892.643 331.145 118.259 0 0
183 395 48 25 8 2414.906000 0 578.94 468.45 91.445 0 0
184 395 48 25 9 2880.284000 0 772.026 418.939 118.479 0 0
185 395 48 25 10 2478.415000 0 514.51 553.351 117.592 0 0
186 395 48 25 11 2608.551000 0 717.288 471.554 108.591 0 0
187 395 48 25 12 2242.610000 0 406.579 502.916 111.28 0 0
188 395 48 50 2 4718.826000 0 1178.64 945.099 106.523 0 0
189 395 48 50 3 4869.194000 0 1179.43 661.726 93.0195 0 0
190 395 48 50 4 4854.372000 0 1168.9 663.651 93.034 0 0
191 395 48 50 5 5211.637000 0 1312.9 664.113 118.883 0 0
192 395 48 50 6 4935.758000 0 1175.9 665.232 119.071 0 0
193 395 48 50 7 5465.009000 0 1411.53 674.034 120.706 0 0
194 395 48 50 8 3704.790000 0 841.562 874.001 119.146 0 0
195 395 48 50 9 3711.243000 0 1056.57 646.897 114.284 0 0
196 395 48 50 10 2431.106000 0 593.548 680.9 92.6725 0 0
197 395 48 50 11 3096.803000 0 866.481 674.768 120.611 0 0
198 395 48 50 12 2714.194000 0 519.764 721.637 117.479 0 0
199 395 48 75 2 5831.213000 0 1414.72 1252.62 104.49 0 0
200 395 48 75 3 6007.522000 0 1410.08 973.007 94.277 0 0
201 395 48 75 4 5995.464000 0 1402.98 975.814 93.239 0 0
202 395 48 75 5 5923.885000 0 1392.01 965.23 94.557 0 0
203 395 48 75 6 6945.668000 0 1504.28 1165.11 123.726 0 0
204 395 48 75 7 6628.007000 0 1598.12 979.968 96.6 0 0
205 395 48 75 8 4161.409000 0 1082.63 1052.27 120.784 0 0
206 395 48 75 9 4010.764000 0 1231.08 833.879 92.873 0 0
207 395 48 75 10 3116.232000 0 810.367 876.663 118.367 0 0
208 395 48 75 11 3518.998000 0 1095.8 803.587 118.507 0 0
209 395 48 75 12 2966.497000 0 649.131 1012.66 118.755 0 0
210 395 48 100 2 7367.644000 0 1825.74 1590.42 107.839 0 0
211 395 48 100 3 8523.819000 0 1813.74 1684.32 124.695 0 0
212 395 48 100 4 8137.964000 0 1819.21 1498.72 124.676 0 0
213 395 48 100 5 7476.306000 0 1810.84 1302.84 94.522 0 0
214 395 48 100 6 7482.702000 0 1818.31 1299.53 95.0575 0 0
215 395 48 100 7 8480.694000 0 2178.84 1305.82 109.695 0 0
216 395 48 100 8 4962.832000 0 1350.59 1305.33 120.866 0 0
217 395 48 100 9 5033.703000 0 1587.41 1039.1 121.368 0 0
218 395 48 100 10 3222.417000 0 885.538 1005.15 92.569 0 0
219 395 48 100 11 4153.083000 0 1432.2 948.491 119.647 0 0
220 395 48 100 12 2867.038000 0 746.542 890.177 111.131 0 0
221 395 96 0 2 2934.745000 0 975.82 285.393 104.292 0 0
222 395 96 0 3 3722.875000 0 997.675 24.7425 119.143 0 0
223 395 96 0 4 3579.717000 0 989.104 21.2705 114.276 0 0
224 395 96 0 5 3749.775000 0 1087.94 23.4485 110.116 0 0
225 395 96 0 6 3289.465000 0 976.597 20.331 91.163 0 0
226 395 96 0 7 2666.939000 0 780.658 20.322 91.1425 0 0
227 395 96 0 8 2430.340000 0 692.896 253.249 92.6575 0 0
228 395 96 0 9 2256.126000 0 676.825 205.872 84.4955 0 0
229 395 96 0 10 2804.789000 0 662.666 473.934 117.751 0 0
230 395 96 0 11 2689.338000 0 767.384 320.339 115.798 0 0
231 395 96 0 12 2620.871000 0 493.445 487.959 118.457 0 0
232 395 96 25 2 5681.418000 0 1619.13 985.733 105.814 0 0
233 395 96 25 3 5936.851000 0 1628.06 729.106 99.6185 0 0
234 395 96 25 4 6092.729000 0 1702.94 728.648 98.1 0 0
235 395 96 25 5 6682.354000 0 1652.77 936.677 123.528 0 0
236 395 96 25 6 6061.286000 0 1622.04 710.711 119.574 0 0
237 395 96 25 7 5771.986000 0 1625.24 694.465 98.238 0 0
238 395 96 25 8 3698.008000 0 1094.15 734.408 117.299 0 0
239 395 96 25 9 3715.480000 0 1243.47 646.895 97.0015 0 0
240 395 96 25 10 3316.532000 0 922.786 800.075 116.087 0 0
241 395 96 25 11 3379.941000 0 1080.65 645.708 118.818 0 0
242 395 96 25 12 2993.694000 0 727.395 832.92 118.329 0 0
243 395 96 50 2 8546.823000 0 2299.91 1701.66 107.222 0 0
244 395 96 50 3 8691.978000 0 2320.72 1391.84 95.862 0 0
245 395 96 50 4 9646.260000 0 2294.95 1758.44 124.619 0 0
246 395 96 50 5 8677.801000 0 2307.15 1398.02 96.4925 0 0
247 395 96 50 6 8623.420000 0 2290.06 1398.73 90.4865 0 0
248 395 96 50 7 9642.915000 0 2613.73 1469.37 98.7875 0 0
249 395 96 50 8 5231.026000 0 1588.51 1257.85 121.783 0 0
250 395 96 50 9 5966.407000 0 1857.12 1368.71 123.636 0 0
251 395 96 50 10 3935.490000 0 1135.16 1208.73 119.569 0 0
252 395 96 50 11 4568.302000 0 1716.08 983.73 120.531 0 0
253 395 96 50 12 3161.044000 0 951.611 916.064 113.859 0 0
254 395 96 75 2 10957.959000 0 2802.3 2367.62 110.266 0 0
255 395 96 75 3 13082.870000 0 2924 2751.26 125.164 0 0
256 395 96 75 4 11736.979000 0 2796.85 2281.6 125.851 0 0
257 395 96 75 5 11779.672000 0 2805.4 2296.31 125.707 0 0
258 395 96 75 6 11093.473000 0 2791.91 2057.25 95.8365 0 0
259 395 96 75 7 12037.270000 0 3164.48 2062.49 97.085 0 0
260 395 96 75 8 6330.420000 0 1893.59 1711.58 99.46 0 0
261 395 96 75 9 7219.510000 0 2430.49 1632.79 95.293 0 0
262 395 96 75 10 4595.736000 0 1500.76 1402.25 93.9005 0 0
263 395 96 75 11 5611.921000 0 2033.72 1357.71 104.916 0 0
264 395 96 75 12 3946.947000 0 1161.53 1351.73 120.96 0 0
265 395 96 100 2 14113.085000 0 3640.97 3071.81 110.729 0 0
266 395 96 100 3 15384.242000 0 3663.38 3185.66 123.681 0 0
267 395 96 100 4 14522.191000 0 3636.32 2871.47 111.871 0 0
268 395 96 100 5 14259.050000 0 3654.59 2778.91 95.846 0 0
269 395 96 100 6 14187.626000 0 3627.87 2768.18 93.4515 0 0
270 395 96 100 7 16143.299000 0 4306.59 2791.55 124.136 0 0
271 395 96 100 8 8072.724000 0 2506.24 2199.15 123.359 0 0
272 395 96 100 9 8850.024000 0 3050.45 2004.91 96.4985 0 0
273 395 96 100 10 5526.483000 0 1744.21 1786.22 121.115 0 0
274 395 96 100 11 6853.540000 0 2626.69 1684.11 123.132 0 0
275 395 96 100 12 4654.352000 0 1483.24 1618.67 122.095 0 0
276 395 192 0 2 4601.707000 0 1801.37 292.285 104.803 0 0
277 395 192 0 3 5321.093000 0 1820.99 21.536 120.045 0 0
278 395 192 0 4 5314.946000 0 1821.8 21.6505 121.508 0 0
279 395 192 0 5 5365.572000 0 1810.46 24.2765 121.07 0 0
280 395 192 0 6 4971.515000 0 1817.99 20.398 88.2525 0 0
281 395 192 0 7 3699.609000 0 1351.45 20.675 117.685 0 0
282 395 192 0 8 3614.425000 0 1252.83 292.637 109.877 0 0
283 395 192 0 9 2890.936000 0 1099.59 207.927 91.78 0 0
284 395 192 0 10 2915.832000 0 962.074 374.621 108.655 0 0
285 395 192 0 11 2984.722000 0 938.975 311.515 115.098 0 0
286 395 192 0 12 3074.387000 0 871.105 525.565 117.826 0 0
287 395 192 25 2 10310.054000 0 3146.94 1731.36 109.915 0 0
288 395 192 25 3 10431.343000 0 3148.35 1431.63 95.9595 0 0
289 395 192 25 4 10380.849000 0 3115.73 1432.58 95.642 0 0
290 395 192 25 5 10437.363000 0 3148.89 1415.83 121.573 0 0
291 395 192 25 6 10401.804000 0 3154.39 1417.57 95.769 0 0
292 395 192 25 7 10329.309000 0 3163.93 1421.29 124.156 0 0
293 395 192 25 8 6017.192000 0 2122.61 1240.61 120.941 0 0
294 395 192 25 9 6023.373000 0 2269.01 1133.72 95.715 0 0
295 395 192 25 10 4596.630000 0 1701.62 1118.73 120.495 0 0
296 395 192 25 11 5434.874000 0 2289.48 1033.8 118.976 0 0
297 395 192 25 12 3398.469000 0 1288.57 896.524 93.0195 0 0
298 395 192 50 2 16083.744000 0 4541.35 3154.44 110.42 0 0
299 395 192 50 3 16147.581000 0 4533.83 2836.89 96.1765 0 0
300 395 192 50 4 16304.141000 0 4550.91 2888.24 97.1435 0 0
301 395 192 50 5 16393.503000 0 4535.63 2942.93 101.126 0 0
302 395 192 50 6 16223.645000 0 4534.02 2853.15 119.499 0 0
303 395 192 50 7 17292.386000 0 4922.3 2879.12 123.915 0 0
304 395 192 50 8 9076.206000 0 3053.94 2264.77 118.421 0 0
305 395 192 50 9 10186.754000 0 3534.76 2382.7 115.68 0 0
306 395 192 50 10 6666.921000 0 2206.08 2170.19 123.888 0 0
307 395 192 50 11 7055.462000 0 2751.42 1737.25 123.412 0 0
308 395 192 50 12 5239.035000 0 1848.13 1708.4 121.861 0 0
309 395 192 75 2 21072.768000 0 5574.28 4553.35 109.61 0 0
310 395 192 75 3 21858.414000 0 5581.22 4457.48 126.793 0 0
311 395 192 75 4 21961.759000 0 5587.23 4493.41 125.997 0 0
312 395 192 75 5 21158.076000 0 5561.34 4252.21 94.257 0 0
313 395 192 75 6 21249.052000 0 5574.58 4248.29 121.756 0 0
314 395 192 75 7 23362.033000 0 6341.21 4282.8 124.719 0 0
315 395 192 75 8 11380.231000 0 3735.49 3182.02 97.0275 0 0
316 395 192 75 9 12998.198000 0 4720.18 3022.06 96.343 0 0
317 395 192 75 10 8245.965000 0 2969.44 2552.22 122.941 0 0
318 395 192 75 11 9877.774000 0 3950.98 2459.71 123.393 0 0
319 395 192 75 12 6515.535000 0 2260.25 2301.27 124.161 0 0
320 395 192 100 2 27529.643000 0 7262.41 6010.27 109.576 0 0
321 395 192 100 3 27598.985000 0 7279.7 5674.37 97.3525 0 0
322 395 192 100 4 27498.321000 0 7266.98 5648.89 96.0555 0 0
323 395 192 100 5 27741.426000 0 7243.2 5782.25 95.7735 0 0
324 395 192 100 6 27540.738000 0 7269.04 5665.75 96.0405 0 0
325 395 192 100 7 31607.270000 0 8637.63 5775.18 121.668 0 0
326 395 192 100 8 14780.799000 0 4910.25 4170.31 121.134 0 0
327 395 192 100 9 16914.990000 0 6017.62 4022.35 123.05 0 0
328 395 192 100 10 9951.033000 0 3479.85 3313.68 126.08 0 0
329 395 192 100 11 11870.378000 0 4636.75 3236.94 120.245 0 0
330 395 192 100 12 7733.293000 0 2947.75 2646.85 96.5 0 0
331 395 384 0 2 7977.679000 0 3464.34 311.764 109.026 0 0
332 395 384 0 3 8339.067000 0 3474.68 20.217 94.0095 0 0
333 395 384 0 4 8277.756000 0 3445.4 20.414 93.475 0 0
334 395 384 0 5 8681.634000 0 3487.37 23.1455 123.548 0 0
335 395 384 0 6 8621.840000 0 3458.18 23.384 123.874 0 0
336 395 384 0 7 5217.864000 0 2464.76 20.5815 94.472 0 0
337 395 384 0 8 5214.191000 0 2345.16 278.082 120.206 0 0
338 395 384 0 9 3997.911000 0 1925.18 209.298 92.6855 0 0
339 395 384 0 10 4153.470000 0 1791.09 401.018 116.309 0 0
340 395 384 0 11 3444.276000 0 1548.7 295.14 95.257 0 0
341 395 384 0 12 3284.650000 0 1460.86 312.315 91.4355 0 0
342 395 384 25 2 19503.331000 0 6205.31 3198.11 109.01 0 0
343 395 384 25 3 19698.786000 0 6244.68 2891.12 94.8075 0 0
344 395 384 25 4 20886.600000 0 6264.46 3334.97 125.154 0 0
345 395 384 25 5 19653.173000 0 6238.55 2884.92 95.2715 0 0
346 395 384 25 6 19692.151000 0 6233.69 2891 96.1435 0 0
347 395 384 25 7 18988.804000 0 6066.75 2864.48 120.948 0 0
348 395 384 25 8 11088.169000 0 4197.45 2479.72 124.771 0 0
349 395 384 25 9 10852.805000 0 4371.07 2132.31 97.6375 0 0
350 395 384 25 10 7897.380000 0 3057.26 2211.17 124.561 0 0
351 395 384 25 11 7996.507000 0 3458.41 1760.77 122.872 0 0
352 395 384 25 12 6195.100000 0 2600.54 1710.63 122.435 0 0
353 395 384 50 2 31138.416000 0 9016.73 6067.99 111.642 0 0
354 395 384 50 3 31854.640000 0 9109.63 5924.08 110.382 0 0
355 395 384 50 4 31347.939000 0 9022.97 5793.02 96.989 0 0
356 395 384 50 5 31208.401000 0 9006.88 5749.44 96.547 0 0
357 395 384 50 6 31246.669000 0 9020.24 5768.51 96.093 0 0
358 395 384 50 7 33444.245000 0 9756.6 5850.53 125.698 0 0
359 395 384 50 8 16527.071000 0 6062.47 4231.59 96.1005 0 0
360 395 384 50 9 18055.540000 0 6887.93 4032.04 96.302 0 0
361 395 384 50 10 11517.792000 0 4425.08 3529.46 120.802 0 0
362 395 384 50 11 12742.611000 0 5328.13 3228.8 118.555 0 0
363 395 384 50 12 8685.851000 0 3646.53 2707.65 96.393 0 0
364 395 384 75 2 41332.158000 0 11124.9 8918.13 109.91 0 0
365 395 384 75 3 41451.130000 0 11124.2 8617.51 96.884 0 0
366 395 384 75 4 41411.856000 0 11097 8627.32 96.1485 0 0
367 395 384 75 5 41664.967000 0 11139.1 8712.31 95.816 0 0
368 395 384 75 6 41500.083000 0 11116 8639.95 97.386 0 0
369 395 384 75 7 45426.090000 0 12595.9 8607.51 123.94 0 0
370 395 384 75 8 21577.843000 0 7428.11 6157.51 95.867 0 0
371 395 384 75 9 25006.736000 0 9283.46 5983.08 123.75 0 0
372 395 384 75 10 15211.662000 0 5921.36 4775.06 98.68 0 0
373 395 384 75 11 18509.026000 0 7732.51 4835.4 124.387 0 0
374 395 384 75 12 11515.651000 0 4498.16 3942.92 128.605 0 0
375 395 384 100 2 54497.060000 0 14693.5 11802.2 114.299 0 0
376 395 384 100 3 56747.048000 0 14732.5 12351.3 127.398 0 0
377 395 384 100 4 54319.104000 0 14544.4 11511.4 97.0645 0 0
378 395 384 100 5 54301.686000 0 14554.2 11498.3 96.32 0 0
379 395 384 100 6 54588.808000 0 14590.7 11582.3 96.499 0 0
380 395 384 100 7 61856.814000 0 17190.4 11624 96.9515 0 0
381 395 384 100 8 28082.903000 0 9753.81 8078.04 96.376 0 0
382 395 384 100 9 32531.092000 0 11863.3 7850.66 96.3605 0 0
383 395 384 100 10 18727.190000 0 6925.67 6305.58 122.722 0 0
384 395 384 100 11 22264.157000 0 9110.15 6139.31 97.583 0 0
385 395 384 100 12 14471.432000 0 5835.11 5034.71 94.472 0 0
386 395 768 0 2 14729.729000 0 6832.49 317.39 110.245 0 0
387 395 768 0 3 14858.224000 0 6738.95 19.8745 95.414 0 0
388 395 768 0 4 15345.196000 0 6827.16 21.742 125.978 0 0
389 395 768 0 5 15359.475000 0 6906.74 20.5795 121.593 0 0
390 395 768 0 6 15424.268000 0 6834.73 24.805 122.937 0 0
391 395 768 0 7 8709.976000 0 4671.07 20.4865 120.051 0 0
392 395 768 0 8 9736.867000 0 4944.69 653.924 121.894 0 0
393 395 768 0 9 6249.027000 0 3585.09 211.376 94.6675 0 0
394 395 768 0 10 6696.952000 0 3497.27 539.475 120.954 0 0
395 395 768 0 11 5095.723000 0 2885.07 296.362 92.9885 0 0
396 395 768 0 12 5338.446000 0 2771.04 407.579 124.701 0 0
397 395 768 25 2 38004.471000 0 12401.7 6113.03 108.151 0 0
398 395 768 25 3 38473.200000 0 12414.5 5908.53 118.004 0 0
399 395 768 25 4 37848.694000 0 12257.6 5822.64 95.579 0 0
400 395 768 25 5 38190.741000 0 12394.4 5857.93 96.9145 0 0
401 395 768 25 6 38042.486000 0 12353.5 5812.18 121.19 0 0
402 395 768 25 7 36751.255000 0 12065.6 5806.57 98.063 0 0
403 395 768 25 8 19672.997000 0 8198.52 4198.16 97.6015 0 0
404 395 768 25 9 20433.719000 0 8576.06 4073.24 123.155 0 0
405 395 768 25 10 13287.304000 0 6028.48 3302.9 98.0465 0 0
406 395 768 25 11 14408.981000 0 6688.02 3220.73 109.568 0 0
407 395 768 25 12 10314.660000 0 4967.2 2690.04 96.783 0 0
408 395 768 50 2 61267.000000 0 18012.3 11854.6 111.52 0 0
409 395 768 50 3 62860.217000 0 18044.3 12186.2 110.748 0 0
410 395 768 50 4 62170.511000 0 17994 11841.6 124.942 0 0
411 395 768 50 5 61765.899000 0 18013.4 11720.8 121.394 0 0
412 395 768 50 6 61488.155000 0 17975.5 11628.3 122.871 0 0
413 395 768 50 7 65788.404000 0 19500.8 11816.9 96.9035 0 0
414 395 768 50 8 31649.420000 0 12007.9 8200.4 97.3045 0 0
415 395 768 50 9 34863.549000 0 13559 7934.7 121.1 0 0
416 395 768 50 10 20921.693000 0 8613.69 6310.58 97.7115 0 0
417 395 768 50 11 24045.746000 0 10416.9 6244.46 97.4555 0 0
418 395 768 50 12 17321.339000 0 7230.12 5856.24 126.095 0 0
419 395 768 75 2 81787.781000 0 22218.4 17639.6 110.86 0 0
420 395 768 75 3 81835.384000 0 22177.2 17344.8 96.3895 0 0
421 395 768 75 4 81827.735000 0 22146.8 17360.1 95.992 0 0
422 395 768 75 5 83221.466000 0 22428.5 17674.9 125.844 0 0
423 395 768 75 6 81784.946000 0 22150.4 17334.2 118.951 0 0
424 395 768 75 7 89503.710000 0 24983.8 17379.2 122.589 0 0
425 395 768 75 8 42480.337000 0 14921.5 12266.9 126.948 0 0
426 395 768 75 9 49848.334000 0 18453.1 12475.6 127.254 0 0
427 395 768 75 10 29302.443000 0 11761.7 9318.21 95.694 0 0
428 395 768 75 11 36296.353000 0 15090.2 10097.9 128.278 0 0
429 395 768 75 12 22136.128000 0 8917.77 7951.38 125.95 0 0
430 395 768 100 2 107661.626000 0 29122.3 23377.6 109.939 0 0
431 395 768 100 3 107611.139000 0 29053.6 23099.5 95.9655 0 0
432 395 768 100 4 112820.109000 0 29508.3 25021.5 121.273 0 0
433 395 768 100 5 107493.551000 0 29030.8 23056.7 96.4985 0 0
434 395 768 100 6 108587.512000 0 29172.7 23334.1 126.186 0 0
435 395 768 100 7 122685.637000 0 34394.4 23289 95.3195 0 0
436 395 768 100 8 54880.282000 0 19414.3 15942.1 93.1575 0 0
437 395 768 100 9 64392.251000 0 23675.9 15921.2 96.4135 0 0
438 395 768 100 10 36444.141000 0 13890.1 12405.1 96.7545 0 0
439 395 768 100 11 43617.494000 0 17961 12320.6 98.1945 0 0
440 395 768 100 12 27992.085000 0 11674.8 9766.62 119.654 0 0
441 395 1536 0 2 28050.279000 0 13485.1 319.073 113.756 0 0
442 395 1536 0 3 28189.627000 0 13399.2 20.3855 93.6465 0 0
443 395 1536 0 4 28567.375000 0 13589.3 20.106 96.287 0 0
444 395 1536 0 5 28790.115000 0 13700.8 20.1985 96.2975 0 0
445 395 1536 0 6 27878.632000 0 13249.3 20.302 96.1905 0 0
446 395 1536 0 7 15917.209000 0 9460.31 20.881 123.598 0 0
447 395 1536 0 8 15312.786000 0 9010.46 332.103 123.014 0 0
448 395 1536 0 9 10711.672000 0 6889.3 215.259 95.1135 0 0
449 395 1536 0 10 10440.211000 0 6693.92 343.196 96.7705 0 0
450 395 1536 0 11 8434.146000 0 5538.5 299.306 95.0475 0 0
451 395 1536 0 12 8991.850000 0 5519.83 558.562 124.358 0 0
452 395 1536 25 2 74586.110000 0 24610 11912.4 111.775 0 0
453 395 1536 25 3 75803.693000 0 24673.4 12045 109.584 0 0
454 395 1536 25 4 74600.770000 0 24573.6 11611.1 96.335 0 0
455 395 1536 25 5 74293.834000 0 24441.3 11591.1 96.0755 0 0
456 395 1536 25 6 74971.748000 0 24669 11606.6 122.607 0 0
457 395 1536 25 7 72373.453000 0 23952.1 11684.7 122.656 0 0
458 395 1536 25 8 38239.344000 0 16375.8 8191.14 123 0 0
459 395 1536 25 9 39384.121000 0 16942.3 7954.93 96.6445 0 0
460 395 1536 25 10 25501.891000 0 11920.3 6430.88 96.3195 0 0
461 395 1536 25 11 28578.887000 0 13120 7018.9 127.593 0 0
462 395 1536 25 12 20351.560000 0 9967.86 5505.24 121.156 0 0
463 395 1536 50 2 121028.051000 0 35651.6 23526.5 110.813 0 0
464 395 1536 50 3 121224.517000 0 35725.4 23213 96.1635 0 0
465 395 1536 50 4 121530.989000 0 35846.8 23238.9 95.9605 0 0
466 395 1536 50 5 121123.624000 0 35536.4 23338.5 95.288 0 0
467 395 1536 50 6 122491.259000 0 35934.2 23505.6 126.905 0 0
468 395 1536 50 7 129777.289000 0 39035.8 23247.1 95.235 0 0
469 395 1536 50 8 61928.987000 0 23850.2 16185.6 97.8385 0 0
470 395 1536 50 9 68454.114000 0 26918.9 15774.2 103.217 0 0
471 395 1536 50 10 40835.146000 0 17141.2 12448.7 95.5335 0 0
472 395 1536 50 11 48177.829000 0 20610.4 13158.8 124.296 0 0
473 395 1536 50 12 31545.433000 0 14334.5 9922.14 96.1915 0 0
474 395 1536 75 2 163533.789000 0 44567.1 35334.6 110.728 0 0
475 395 1536 75 3 163343.185000 0 44426.2 34954 119.015 0 0
476 395 1536 75 4 163685.559000 0 44602.9 34900.2 126.303 0 0
477 395 1536 75 5 164795.224000 0 44603.2 35406.4 126.968 0 0
478 395 1536 75 6 162652.510000 0 44297.8 34802.4 97.315 0 0
479 395 1536 75 7 178779.516000 0 50161.7 35114.9 126.595 0 0
480 395 1536 75 8 83756.372000 0 29947.9 24256.7 98.2155 0 0
481 395 1536 75 9 96398.197000 0 36712 23590 97.127 0 0
482 395 1536 75 10 57988.175000 0 23654.1 18428.2 125.07 0 0
483 395 1536 75 11 68818.150000 0 29991.1 18188.2 96.9635 0 0
484 395 1536 75 12 42003.151000 0 17775 14694 96.405 0 0
485 395 1536 100 2 215707.623000 0 58136.8 47241.7 112.882 0 0
486 395 1536 100 3 215701.805000 0 58649.7 46469.2 96.498 0 0
487 395 1536 100 4 215631.200000 0 58273.1 46651.6 127.144 0 0
488 395 1536 100 5 214957.871000 0 58228.6 46443.9 95.4615 0 0
489 395 1536 100 6 214753.653000 0 58099.9 46515.6 121.511 0 0
490 395 1536 100 7 244373.639000 0 68436.5 46902.6 96.337 0 0
491 395 1536 100 8 109519.192000 0 38696.7 32281.3 122.995 0 0
492 395 1536 100 9 127115.161000 0 47292 31244.6 97.4015 0 0
493 395 1536 100 10 71945.522000 0 27533.3 24778.6 126.504 0 0
494 395 1536 100 11 85353.700000 0 35672.4 24044.6 95.6895 0 0
495 395 1536 100 12 55111.842000 0 23291.1 19433.3 94.121 0 0
496 395 3072 0 2 26872.547000 0 13162.3 166.284 56.1735 0 0
497 395 3072 0 3 26564.217000 0 12928.8 8.181 47.486 0 0
498 395 3072 0 4 26487.477000 0 12888 8.535 48.0445 0 0
499 395 3072 0 5 26973.539000 0 13134.6 8.309 46.293 0 0
500 395 3072 0 6 26394.665000 0 12848.8 8.2415 47.061 0 0
501 395 3072 0 7 14022.548000 0 8768.32 8.4775 60.5085 0 0
502 395 3072 0 8 13697.947000 0 8621.57 153.849 46.9325 0 0
503 395 3072 0 9 9707.221000 0 6609.54 105.757 60.517 0 0
504 395 3072 0 10 9503.312000 0 6526.6 184.97 47.666 0 0
505 395 3072 0 11 7617.231000 0 5271.83 162.958 60.5485 0 0
506 395 3072 0 12 7628.278000 0 5256 274.984 60.51 0 0
507 395 3072 25 2 71211.859000 0 23604.8 11355.3 56.1995 0 0
508 395 3072 25 3 71920.774000 0 23859.3 11250.6 46.728 0 0
509 395 3072 25 4 72020.497000 0 23762.3 11406.8 46.956 0 0
510 395 3072 25 5 72368.342000 0 23831.1 11429.8 61.774 0 0
511 395 3072 25 6 71797.628000 0 23917.7 11149.9 47.525 0 0
512 395 3072 25 7 69125.895000 0 23188.4 11231.9 47.0405 0 0
513 395 3072 25 8 36810.900000 0 15997.1 7896.6 61.3075 0 0
514 395 3072 25 9 38135.158000 0 16335.9 7955.77 62.2975 0 0
515 395 3072 25 10 24029.467000 0 11536.7 5962.69 47.545 0 0
516 395 3072 25 11 26649.585000 0 12634.6 6360.27 61.7525 0 0
517 395 3072 25 12 18694.162000 0 9575.75 4888 60.9195 0 0
518 395 3072 50 2 116883.848000 0 34764.7 22503.3 55.8935 0 0
519 395 3072 50 3 116886.218000 0 34470.3 22598.6 47.2245 0 0
520 395 3072 50 4 116995.432000 0 34644 22482.7 47.9805 0 0
521 395 3072 50 5 116973.326000 0 34709.8 22413.2 47.886 0 0
522 395 3072 50 6 117144.959000 0 34615.5 22476.2 60.538 0 0
523 395 3072 50 7 125945.148000 0 37792.8 22862 46.798 0 0
524 395 3072 50 8 59091.993000 0 23128.9 15273.2 61.0265 0 0
525 395 3072 50 9 66065.443000 0 26182.6 15248.1 47.4025 0 0
526 395 3072 50 10 39322.208000 0 16746.3 11933.9 61.8925 0 0
527 395 3072 50 11 44526.376000 0 19889.5 11440.8 60.3665 0 0
528 395 3072 50 12 30244.211000 0 13878.4 9623.59 47.534 0 0
529 395 3072 75 2 157327.800000 0 43123.7 33845.2 54.6955 0 0
530 395 3072 75 3 165011.828000 0 43593.5 36747.6 62.47 0 0
531 395 3072 75 4 157142.458000 0 42987.6 33612.5 62.4215 0 0
532 395 3072 75 5 158664.773000 0 43048.7 34261.2 62.1855 0 0
533 395 3072 75 6 157026.916000 0 42962.5 33645.9 47.453 0 0
534 395 3072 75 7 171824.043000 0 48493.4 33591.1 47.635 0 0
535 395 3072 75 8 79405.198000 0 28806.5 22773 47.215 0 0
536 395 3072 75 9 92588.816000 0 35591.6 22559.9 47.1035 0 0
537 395 3072 75 10 55016.598000 0 22849 17367.4 47.9025 0 0
538 395 3072 75 11 65758.861000 0 28843.9 17252 60.8035 0 0
539 395 3072 75 12 39894.922000 0 17221.5 13800.9 47.218 0 0
540 395 3072 100 2 207184.106000 0 56160.3 45161 54.8125 0 0
541 395 3072 100 3 207340.315000 0 56390.7 44823 54.621 0 0
542 395 3072 100 4 207230.268000 0 56311.9 44794.5 62.06 0 0
543 395 3072 100 5 208577.492000 0 56347.9 45306.3 48.174 0 0
544 395 3072 100 6 210477.151000 0 56238.5 46406.6 61.7365 0 0
545 395 3072 100 7 234721.764000 0 66388.5 44737.5 46.878 0 0
546 395 3072 100 8 107391.687000 0 37861.8 31965.7 61.868 0 0
547 395 3072 100 9 122777.291000 0 45750.6 30344.8 61.0135 0 0
548 395 3072 100 10 68505.599000 0 26834.7 23190.4 47.6525 0 0
549 395 3072 100 11 81923.968000 0 34563.4 22943.9 47.6005 0 0
550 395 3072 100 12 52686.818000 0 22561.4 18458.5 61.7225 0 0
551 395 6144 0 2 52646.173000 0 26055.8 162.622 53.7855 0 0
552 395 6144 0 3 51865.699000 0 25586.9 8.1235 47.26 0 0
553 395 6144 0 4 52719.289000 0 26007.5 8.4525 48.8345 0 0
554 395 6144 0 5 52824.576000 0 26001.4 8.412 60.6405 0 0
555 395 6144 0 6 52159.810000 0 25733.1 8.3835 47.47 0 0
556 395 6144 0 7 27195.013000 0 17511.8 8.3365 60.428 0 0
557 395 6144 0 8 26960.570000 0 17362.8 175.717 60.9345 0 0
558 395 6144 0 9 18220.886000 0 13071.8 108.053 46.904 0 0
559 395 6144 0 10 18473.349000 0 13118.3 205.686 61.282 0 0
560 395 6144 0 11 14162.633000 0 10575.7 161.231 60.863 0 0
561 395 6144 0 12 14251.578000 0 10432 357.43 59.271 0 0
562 395 6144 25 2 143234.640000 0 47576.2 22816.9 54.612 0 0
563 395 6144 25 3 142700.374000 0 47549 22427.9 54.131 0 0
564 395 6144 25 4 144093.301000 0 47766 22894.1 47.2235 0 0
565 395 6144 25 5 142568.144000 0 47468.7 22456.2 47.3005 0 0
566 395 6144 25 6 142883.159000 0 47693.2 22359.2 48.0195 0 0
567 395 6144 25 7 137259.479000 0 46025.7 22459.1 47.592 0 0
568 395 6144 25 8 72914.816000 0 31737.7 15831.6 61.532 0 0
569 395 6144 25 9 74231.822000 0 32429.4 15145.8 61.732 0 0
570 395 6144 25 10 47633.143000 0 23075.4 11812.5 62.9725 0 0
571 395 6144 25 11 51415.062000 0 25182.4 11555.7 62.3525 0 0
572 395 6144 25 12 36392.771000 0 18977.3 9442.9 63.0235 0 0
573 395 6144 50 2 233519.663000 0 69502.4 45023.6 54.4095 0 0
574 395 6144 50 3 237842.940000 0 70316.9 46050.8 60.5825 0 0
575 395 6144 50 4 233899.059000 0 69671.1 44800.2 47.7005 0 0
576 395 6144 50 5 233930.987000 0 69678.5 44787.7 61.253 0 0
577 395 6144 50 6 234587.807000 0 69947.5 44873 60.4625 0 0
578 395 6144 50 7 248829.998000 0 75437.4 44873.1 61.3355 0 0
579 395 6144 50 8 117801.006000 0 46371 30419 47.6565 0 0
580 395 6144 50 9 130824.120000 0 52059.1 30181.6 47.1975 0 0
581 395 6144 50 10 77157.924000 0 33326.8 23168.8 46.9605 0 0
582 395 6144 50 11 89486.626000 0 39728.7 23671.6 61.1265 0 0
583 395 6144 50 12 58907.682000 0 27600 18393.3 46.784 0 0
584 395 6144 75 2 313490.290000 0 85936.8 67457.3 54.4225 0 0
585 395 6144 75 3 313433.715000 0 86014.5 67222.9 47.097 0 0
586 395 6144 75 4 314087.787000 0 85942.4 67567.6 62.1975 0 0
587 395 6144 75 5 313537.377000 0 86216.3 67077.4 47.503 0 0
588 395 6144 75 6 312888.875000 0 86003.2 66893.3 62.8505 0 0
589 395 6144 75 7 345363.778000 0 97298.8 68111.6 46.5335 0 0
590 395 6144 75 8 158294.241000 0 57476.7 45587.4 47.8705 0 0
591 395 6144 75 9 185655.887000 0 71854.9 45039.2 60.393 0 0
592 395 6144 75 10 109428.414000 0 45720.7 34470.7 46.95 0 0
593 395 6144 75 11 130927.219000 0 57798.9 34477.1 59.6395 0 0
594 395 6144 75 12 79913.556000 0 34445.8 27893.8 47.243 0 0
595 395 6144 100 2 413164.963000 0 112767 89372.1 56.2135 0 0
596 395 6144 100 3 413604.145000 0 112415 89828.9 48.997 0 0
597 395 6144 100 4 416246.279000 0 112969 90463.5 62.5615 0 0
598 395 6144 100 5 413932.216000 0 112771 89613.7 48.4495 0 0
599 395 6144 100 6 415350.281000 0 113553 89561.9 58.7405 0 0
600 395 6144 100 7 469647.367000 0 132644 89843 59.0625 0 0
601 395 6144 100 8 209013.667000 0 75375.5 60801.5 50.1125 0 0
602 395 6144 100 9 244350.339000 0 91738.8 59953 49.2285 0 0
603 395 6144 100 10 136801.526000 0 53672.1 46479.6 61.5315 0 0
604 395 6144 100 11 162888.572000 0 68900.4 45662.3 47.541 0 0
605 395 6144 100 12 105252.654000 0 45188 37002.4 47.4885 0 0
606 296 6 0 4 2167.595000 0 208.433 23.9605 143.827 21.082 0
607 296 6 0 5 2439.423000 0 213.586 28.311 149.557 21.372 0
608 296 6 0 6 1942.576000 0 203.084 20.349 137.555 21.0825 0
609 296 6 0 7 2022.726000 0 259.771 20.432 123.043 21.253 0
610 296 6 0 8 2142.746000 0 196.189 323.928 144.499 21.119 0
611 296 6 0 9 2321.999000 0 335.419 259.803 148.952 30.836 0
612 296 6 0 10 2169.289000 0 173.462 396.98 150.678 21.054 0
613 296 6 0 11 2307.424000 0 316.123 332.906 149.622 21.134 0
614 296 6 0 12 1795.157000 0 142.024 355.307 123.204 21.1055 0
615 296 6 25 4 2285.629000 0 209.739 26.846 149.883 21.1025 0
616 296 6 25 5 1866.052000 0 202.623 19.993 124.285 21.1025 0
617 296 6 25 6 2274.594000 0 209.708 27.1155 148.783 21.105 0
618 296 6 25 7 2224.541000 0 270.062 20.649 148.469 25.6425 0
619 296 6 25 8 2390.197000 0 212.454 379.956 149.514 20.981 0
620 296 6 25 9 2074.641000 0 298.575 235.705 130.153 21.202 0
621 296 6 25 10 1818.748000 0 152.556 384.849 123.459 21.1415 0
622 296 6 25 11 2316.539000 0 287.975 364.043 149.601 21.4105 0
623 296 6 25 12 1781.043000 0 142.006 342.45 122.001 20.7535 0
624 296 6 50 4 2014.602000 0 206.159 21.901 133.551 20.978 0
625 296 6 50 5 1870.134000 0 201.521 20.149 123.578 20.986 0
626 296 6 50 6 1992.582000 0 201.507 20.228 144.994 21.043 0
627 296 6 50 7 2383.376000 0 321.192 20.489 160.692 20.9555 0
628 296 6 50 8 2467.223000 0 214.118 422.809 162.688 29.6395 0
629 296 6 50 9 2550.127000 0 349.226 269.951 156.342 21.576 0
630 296 6 50 10 1817.832000 0 152.696 383.949 122.969 20.9005 0
631 296 6 50 11 1924.726000 0 243.749 325.453 123.378 21.0875 0
632 296 6 50 12 2147.280000 0 141.815 413.119 157.448 21.9565 0
633 296 6 75 4 1911.029000 0 203.679 20.685 126.033 21.195 0
634 296 6 75 5 2033.206000 0 201.807 20.3065 148.335 26.5855 0
635 296 6 75 6 1870.558000 0 202.026 20.296 123.306 21.1345 0
636 296 6 75 7 2252.442000 0 298.933 20.392 155.126 21.123 0
637 296 6 75 8 2059.660000 0 169.905 297.424 148.617 20.997 0
638 296 6 75 9 1964.024000 0 289.172 240.342 123.493 20.857 0
639 296 6 75 10 1812.677000 0 152.443 385.419 122.712 35.532 0
640 296 6 75 11 2664.906000 0 301.445 455.671 166.872 21.3785 0
641 296 6 75 12 2186.124000 0 163.497 402.61 151.497 20.9935 0
642 296 6 100 4 1875.456000 0 203.897 20.082 123.093 21.0815 0
643 296 6 100 5 2088.430000 0 263.147 20.0535 139.697 27.8635 0
644 296 6 100 6 2025.772000 0 202.41 20.246 147.042 20.834 0
645 296 6 100 7 2101.731000 0 263.643 20.754 130.333 21.0475 0
646 296 6 100 8 2165.377000 0 206.664 336.814 146.707 21.477 0
647 296 6 100 9 2339.735000 0 316.249 286.008 150.048 21.7535 0
648 296 6 100 10 1792.557000 0 152.737 380.99 121.489 25.008 0
649 296 6 100 11 2125.411000 0 253.808 347.264 127.794 21.0575 0
650 296 6 100 12 1786.521000 0 141.905 356.929 123.145 20.956 0
651 296 12 0 4 2377.574000 0 262.837 26.289 149.966 21.1275 0
652 296 12 0 5 1976.330000 0 256.156 20.1315 123.143 21.182 0
653 296 12 0 6 1911.162000 0 255.359 20.3255 118.811 20.965 0
654 296 12 0 7 2068.891000 0 296.223 20.475 122.727 21.007 0
655 296 12 0 8 2175.988000 0 206.296 309.623 149.792 24.926 0
656 296 12 0 9 2001.385000 0 315.808 232.198 123.266 20.9945 0
657 296 12 0 12 2230.622000 0 176.501 437.939 149.371 21.2705 0
658 296 12 25 4 2041.169000 0 279.898 53.523 123.978 21.046 0
659 296 12 25 5 2258.942000 0 310.271 57.1845 129.802 25.942 0
660 296 12 25 6 2030.038000 0 279.575 53.6455 123.298 21.074 0
661 296 12 25 7 2471.144000 0 390.53 54.4355 149.488 21.2595 0
662 296 12 25 8 2285.957000 0 277.457 330.193 133.712 21 0
663 296 12 25 9 2436.092000 0 364.712 276.821 148.623 20.9265 0
664 296 12 25 10 1857.518000 0 191.264 403.375 122.992 21.0525 0
665 296 12 25 11 2055.139000 0 285.7 336.471 125.976 22.1315 0
666 296 12 25 12 2345.056000 0 171.837 411.184 158.916 21.3675 0
667 296 12 50 4 2729.816000 0 365.191 149.908 163.809 21.1965 0
668 296 12 50 5 2646.531000 0 359.433 147.76 149.76 20.965 0
669 296 12 50 6 2661.120000 0 360.836 148.569 150.639 24.2325 0
670 296 12 50 7 2945.635000 0 510.713 136.766 150.927 22.146 0
671 296 12 50 8 2169.633000 0 246.062 353.43 148.399 20.7055 0
672 296 12 50 9 2468.638000 0 407.314 344.552 150.472 27.5755 0
673 296 12 50 10 2272.241000 0 212.792 513.991 150.326 21.1465 0
674 296 12 50 11 2417.994000 0 397.976 391.617 149.091 26.3915 0
675 296 12 50 12 2237.434000 0 189.726 472.588 149.952 20.949 0
676 296 12 75 4 2663.116000 0 376.285 185.513 150.965 21.0705 0
677 296 12 75 5 2687.907000 0 380.646 186.207 157.409 21.046 0
678 296 12 75 6 2378.039000 0 361.985 146.247 146.111 35.67 0
679 296 12 75 7 2497.705000 0 441.783 149.619 122.78 20.98 0
680 296 12 75 8 2474.300000 0 314.077 434.726 149.267 20.742 0
681 296 12 75 9 2168.580000 0 388.855 318.248 124.974 21.123 0
682 296 12 75 10 2412.775000 0 249.298 503.934 149.609 21.3125 0
683 296 12 75 11 2413.592000 0 403.581 393.718 146.419 24.9895 0
684 296 12 75 12 1931.671000 0 200.037 405.75 125.792 21.04 0
685 296 12 100 4 3108.467000 0 509.651 270.945 149.188 21.1095 0
686 296 12 100 5 2455.797000 0 412.478 207.038 124.709 21.083 0
687 296 12 100 6 2585.722000 0 414.991 214.117 148.209 21.109 0
688 296 12 100 7 2943.929000 0 536.915 221.796 139.368 24.3075 0
689 296 12 100 8 2047.510000 0 297.619 392.037 123.075 20.938 0
690 296 12 100 10 2464.423000 0 261.636 568.241 162.742 21.039 0
691 296 12 100 11 2607.742000 0 532.264 407.797 154.05 21.047 0
692 296 12 100 12 2399.687000 0 246.952 577.759 150.234 21.211 0
693 296 24 0 4 2612.382000 0 378.723 25.9225 151.471 20.972 0
694 296 24 0 5 2572.117000 0 366.172 26.1675 150.196 21.098 0
695 296 24 0 6 2179.630000 0 357.509 20.2545 122.99 21.1885 0
696 296 24 0 7 2478.815000 0 378.84 20.717 146.57 21.2895 0
697 296 24 0 8 2286.277000 0 275.952 310.388 150.682 20.9585 0
698 296 24 0 9 2572.142000 0 421.617 261.918 148.605 26.444 0
699 296 24 0 10 2255.053000 0 261.964 393.177 150.385 21.1835 0
700 296 24 0 11 2215.493000 0 337.088 327.862 130.406 21.0575 0
701 296 24 25 4 2458.544000 0 464.728 147.089 123.479 24.206 0
702 296 24 25 5 2444.523000 0 465.065 145.324 122.942 21.3555 0
703 296 24 25 6 2457.530000 0 465.2 146.365 124.316 21.311 0
704 296 24 25 7 2784.142000 0 521.917 148.248 148.584 25.191 0
705 296 24 25 8 2464.267000 0 340.027 432.039 157.346 20.936 0
706 296 24 25 9 2691.947000 0 516.38 327.22 146.886 50.6415 0
707 296 24 25 10 2099.760000 0 273.626 453.781 124.344 21.254 0
708 296 24 25 11 2595.309000 0 472.84 433.349 149.4 22.2885 0
709 296 24 25 12 2289.281000 0 240.969 514.527 149.629 21.1195 0
710 296 24 50 4 3496.782000 0 628.423 382.375 151.405 79.782 0
711 296 24 50 5 3274.552000 0 618.444 297.431 165.314 21.238 0
712 296 24 50 6 3150.460000 0 618.594 297.709 150.232 21.007 0
713 296 24 50 7 3527.156000 0 704.101 302.496 143.94 27.936 0
714 296 24 50 8 2578.362000 0 431.698 519.166 149.42 36.1215 0
715 296 24 50 9 2870.876000 0 613.847 486.164 150.933 21.111 0
716 296 24 50 10 2297.944000 0 332.506 540.166 124.566 20.9665 0
717 296 24 50 11 2655.259000 0 528.508 495.89 149.053 21.5805 0
718 296 24 50 12 1972.248000 0 280.94 466.997 123.725 21.154 0
719 296 24 75 4 3520.288000 0 707.76 427.021 126.173 21.003 0
720 296 24 75 5 3484.365000 0 705.032 420.515 125.311 21.169 0
721 296 24 75 6 3696.821000 0 716.06 449.276 128.873 21.1385 0
722 296 24 75 7 3944.884000 0 828.902 424.154 164.206 28 0
723 296 24 75 8 2754.628000 0 524.252 610.071 140.056 20.8265 0
724 296 24 75 10 2300.420000 0 397.573 600.317 135.604 25.8515 0
725 296 24 75 12 2518.863000 0 344.578 654.145 148.561 21.299 0
726 296 24 100 4 4163.042000 0 880.243 570.833 126.361 20.7205 0
727 296 24 100 5 4790.938000 0 885.802 757.38 152.158 21.134 0
728 296 24 100 6 4794.262000 0 883.966 755.001 153.935 21.1545 0
729 296 24 100 7 5235.464000 0 1136.55 657.147 134.085 22.2385 0
730 296 24 100 8 2763.382000 0 598.348 648.629 119.129 21.012 0
731 296 24 100 9 3071.402000 0 820.487 587.534 124.422 21.2185 0
732 296 24 100 10 2733.417000 0 463.302 799.485 150.754 21.142 0
733 296 24 100 11 2647.591000 0 701.148 594.99 124.484 20.94 0
734 296 24 100 12 2766.333000 0 399.155 713.945 150.336 21.24 0
735 296 48 0 4 2928.987000 0 569.589 24.344 149.525 27.2415 0
736 296 48 0 5 2772.513000 0 620.377 21.4675 127.181 20.8865 0
737 296 48 0 6 2613.040000 0 567.212 20.415 123.625 21.065 0
738 296 48 0 7 2501.607000 0 513.561 20.341 141.375 24.9745 0
739 296 48 0 8 2482.947000 0 416.829 312.927 148.322 21.3475 0
740 296 48 0 9 2242.243000 0 484.791 233.081 124.788 20.8685 0
741 296 48 0 10 2370.583000 0 336.01 407.907 149.638 21.36 0
742 296 48 0 11 2546.219000 0 444.547 371.653 161.449 22.59 0
743 296 48 0 12 2426.315000 0 323.855 472.452 150.144 21.1485 0
744 296 48 25 4 3875.660000 0 849.037 384.248 143.697 20.954 0
745 296 48 25 5 3796.574000 0 894.511 328.192 160.457 21.153 0
746 296 48 25 6 3729.665000 0 869.215 329.31 125.837 20.6905 0
747 296 48 25 7 4027.759000 0 1065.83 330.626 149.946 21.4615 0
748 296 48 25 9 3127.632000 0 831.382 453.934 149.599 23.8855 0
749 296 48 25 10 2584.322000 0 455.558 642.798 151.88 21.122 0
750 296 48 25 11 2602.869000 0 638.221 481.307 132.059 21.1555 0
751 296 48 25 12 2578.430000 0 406.504 641.79 145.517 20.927 0
752 296 48 50 4 4936.827000 0 1170.37 663.071 127.876 24.1735 0
753 296 48 50 5 4978.724000 0 1188.34 667.3 125.529 24.6475 0
754 296 48 50 6 4980.711000 0 1177.91 665.42 127.532 21.01 0
755 296 48 50 7 5490.194000 0 1318.17 670.45 152.841 24.2385 0
756 296 48 50 8 3189.222000 0 802.358 725.923 124.672 44.7875 0
757 296 48 50 9 3591.576000 0 1035.28 635.447 150.814 22.003 0
758 296 48 50 10 2830.721000 0 592.641 762.766 160.635 21.0195 0
759 296 48 50 11 3131.171000 0 857.455 655.783 149.838 34.232 0
760 296 48 50 12 2630.519000 0 488.729 677.125 162.625 21.36 0
761 296 48 75 2
762 296 48 75 4 6472.297000 0 1519.23 1037.57 132.116 21.043 0
763 296 48 75 5 7079.681000 0 1416.14 1330.76 158.523 21.219 0
764 296 48 75 6 6987.616000 0 1439.46 1216.01 158.691 21.065 0
765 296 48 75 7 6662.871000 0 1618.55 981.86 129.414 20.952 0
766 296 48 75 8 3733.239000 0 950.744 911.158 126.18 21.065 0
767 296 48 75 9 4223.094000 0 1254.77 860.717 149.961 21.7985 0
768 296 48 75 10 3319.058000 0 773.842 1016.62 151.116 22.236 0
769 296 48 75 11 3524.400000 0 1071.28 830.104 143.725 23.225 0
770 296 48 75 12 2474.143000 0 588.644 760.817 124.145 21.087 0
771 296 48 100 4 8247.039000 0 1816.95 1522.27 160.268 20.9525 0
772 296 48 100 5 7792.519000 0 1830.16 1315.67 154.669 21.2735 0
773 296 48 100 6 8218.423000 0 1816.93 1515.1 158.361 21.157 0
774 296 48 100 7 8595.983000 0 2167.6 1316.78 147.582 23.004 0
775 296 48 100 8 5144.602000 0 1251.75 1378.85 154.194 29.5815 0
776 296 48 100 9 5139.506000 0 1595.82 1058.36 154.463 20.9765 0
777 296 48 100 10 3481.670000 0 885.771 1071.07 150.617 20.7685 0
778 296 48 100 11 3819.668000 0 1251.99 955.032 126.272 21.849 0
779 296 96 0 4 3916.890000 0 988.384 28.161 164.136 21.111 0
780 296 96 0 5 3473.807000 0 987.515 20.386 127.833 20.829 0
781 296 96 0 6 3420.958000 0 966.232 20.6155 123.75 20.9995 0
782 296 96 0 7 3068.482000 0 824.084 20.52 147.325 23.3985 0
783 296 96 0 8 2802.799000 0 695.052 272.028 145.048 29.022 0
784 296 96 0 9 2764.720000 0 702.697 274.656 144.776 21.179 0
785 296 96 0 11 2679.470000 0 607.657 323.153 149.09 21.208 0
786 296 96 0 12 2595.854000 0 454.584 391.021 148.308 20.8145 0
787 296 96 25 4 6050.414000 0 1668.57 710.961 129.457 22.176 0
788 296 96 25 5 6102.034000 0 1668.76 710.426 129.181 21.2145 0
789 296 96 25 6 5890.289000 0 1609.53 698.372 127.407 21.0745 0
790 296 96 25 7 6307.057000 0 1701.17 762.371 149.841 21.1245 0
791 296 96 25 8 3826.138000 0 1095.43 748.59 151.473 20.735 0
792 296 96 25 9 3744.576000 0 1224.4 667.883 125.02 21.1885 0
793 296 96 25 11 3450.899000 0 1069.48 679.522 151.481 21.4345 0
794 296 96 25 12 3072.175000 0 679.92 763.91 149.459 20.99 0
795 296 96 50 4 8754.022000 0 2293.21 1408.8 130.277 21.071 0
796 296 96 50 5 8779.815000 0 2316.02 1401.69 129.975 21.3245 0
797 296 96 50 6 8800.482000 0 2297.21 1389.85 157.856 21.225 0
798 296 96 50 7 9360.361000 0 2527.39 1400.04 147.625 23.6675 0
799 296 96 50 8 5606.278000 0 1580.93 1428.16 170.665 21.127 0
800 296 96 50 9 5489.518000 0 1844.08 1127.59 128.146 21.252 0
801 296 96 50 10 4138.844000 0 1152.43 1277.25 153.444 21.0785 0
802 296 96 50 11 4392.435000 0 1586.15 999.139 137.342 22.1155 0
803 296 96 50 12 3555.583000 0 995.244 1102.84 151.234 21.25 0
804 296 96 75 4 11766.566000 0 2789.73 2273.06 159.567 21.2405 0
805 296 96 75 5 12720.538000 0 2933.6 2542.11 164.493 38.9685 0
806 296 96 75 6 11237.223000 0 2790.98 2073.67 133.588 20.949 0
807 296 96 75 7 12222.427000 0 3170.72 2085.8 150.446 22.38 0
808 296 96 75 8 6686.717000 0 1962.27 1764.11 158.473 20.845 0
809 296 96 75 9 7283.240000 0 2431.39 1584.26 157.697 24.05 0
810 296 96 75 10 5082.715000 0 1512.42 1633.22 155.946 21.2195 0
811 296 96 75 12 4143.521000 0 1231.85 1387.65 154.032 30.1835 0

View File

@ -0,0 +1,350 @@
395,6,0,1,549.759000,0,198.494,179.04,44.75,0,5.646
395,6,25,1,539.196000,0,192.308,174.378,44.006,0,5.7
395,6,50,1,545.386000,0,194.225,175.032,44.278,0,5.927
395,6,75,1,538.549000,0,192.113,174.572,44.31,0,5.81
395,6,100,1,534.157000,0,190.598,173.702,43.868,0,5.602
395,12,0,1,650.557000,0,299.869,175.52,43.862,0,5.714
395,12,25,1,716.742000,0,298.586,240.301,43.899,0,5.618
395,12,50,1,849.290000,0,307.962,358.582,44.223,0,5.542
395,12,75,1,920.849000,0,310.502,420.083,43.979,0,5.738
395,12,100,1,1054.387000,0,315.848,536.545,43.719,0,5.646
395,24,0,1,856.342000,0,509.837,175.68,44.306,0,5.651
395,24,25,1,1126.995000,0,519.368,417.692,43.949,0,5.609
395,24,50,1,1484.150000,0,540.539,721.214,44.514,0,5.697
395,24,75,1,1739.532000,0,546.198,948.77,43.965,0,5.934
395,24,100,1,2082.455000,0,572.68,1242.61,43.545,0,5.583
395,48,0,1,1276.894000,0,931.671,175.357,43.495,0,5.582
395,48,25,1,1956.367000,0,959.247,770.052,43.913,0,5.817
395,48,50,1,2697.496000,0,999.041,1420.5,43.797,0,5.542
395,48,75,1,3390.911000,0,1031.05,2000.94,43.021,0,5.242
395,48,100,1,4136.318000,0,1075.75,2659.19,43.631,0,5.49
395,96,0,1,2139.228000,0,1765.26,176.071,44.43,0,5.713
395,96,25,1,3628.631000,0,1859.72,1475.51,43.099,0,5.36
395,96,50,1,5177.524000,0,1911.78,2849.03,43.327,0,5.479
395,96,75,1,6682.658000,0,2024.98,4125.85,43.24,0,5.318
395,96,100,1,8198.569000,0,2073.83,5471.32,43.511,0,5.385
395,192,0,1,3847.869000,0,3492.82,175.951,44.422,0,5.743
395,192,25,1,6906.472000,0,3597.19,2888.98,43.429,0,5.455
395,192,50,1,10144.337000,0,3748.11,5716.55,43.066,0,5.315
395,192,75,1,13237.425000,0,3974.05,8345.36,43.151,0,5.268
395,192,100,1,16347.043000,0,4078.72,11107.3,42.765,0,5.274
395,384,0,1,7120.758000,0,6766.8,175.718,43.86,0,5.581
395,384,25,1,13375.503000,0,6976.33,5723.54,42.71,0,5.186
395,384,50,1,19967.603000,0,7444.26,11334,43.624,0,5.334
395,384,75,1,26376.554000,0,7886.18,16809.7,43.222,0,5.304
395,384,100,1,32577.355000,0,8053.7,22353.8,42.574,0,5.224
395,768,0,1,13901.559000,0,13545.2,176.331,44.174,0,5.889
395,768,25,1,26675.829000,0,14140.2,11360.2,42.565,0,5.181
395,768,50,1,39531.541000,0,14799.1,22534.3,43.083,0,5.233
395,768,75,1,53427.566000,0,15832.7,34341.4,43.407,0,5.299
395,768,100,1,65238.720000,0,15970.5,45062.9,42.751,0,5.325
395,1536,0,1,27389.534000,0,26994.6,181.102,45.325,0,6.374
395,1536,25,1,53023.014000,0,28211.6,22604.6,43.69,0,5.518
395,1536,50,1,78662.469000,0,29400.7,45048.5,42.449,0,5.455
395,1536,75,1,105705.000000,0,31277.1,68149.6,43.251,0,5.336
395,1536,100,1,130351.834000,0,31837.4,90227.8,42.608,0,5.289
395,3072,0,1,26108.282000,0,25928.4,90.142,21.552,0,2.923
395,3072,25,1,51052.296000,0,27237.6,21774.2,20.862,0,2.634
395,3072,50,1,75797.875000,0,28424.5,43377.2,20.751,0,2.677
395,3072,75,1,100778.411000,0,29895.3,64948.5,20.661,0,2.665
395,3072,100,1,125369.237000,0,30816.9,86686.7,20.828,0,2.644
395,6144,0,1,51601.931000,0,51423.3,89.516,21.341,0,2.831
395,6144,25,1,101723.033000,0,54382.4,43360.8,20.898,0,2.637
395,6144,50,1,151128.302000,0,56093.5,87120.6,20.673,0,2.587
395,6144,75,1,201902.363000,0,60077.1,130069,20.617,0,2.717
395,6144,100,1,250345.872000,0,61134.3,173470,21.036,0,2.75
395,12288,0,1,210229.234000,0,209855,180.033,44.287,0,5.822
395,12288,25,1,419751.795000,0,223668,179743,43.816,0,5.547
395,12288,50,1,626642.153000,0,234890,359220,44.121,0,5.59
395,12288,75,1,834582.246000,0,247474,538499,44.078,0,5.464
395,12288,100,1,1037064.212000,0,254443,718016,45.52,0,6.031
395,24576,0,1,426136.132000,0,425732,183.552,45.022,0,6.581
395,24576,25,1,842067.721000,0,450599,358969,44.721,0,6.373
395,24576,50,1,1257499.045000,0,469033,723130,45.858,0,6.576
395,24576,75,1,1671219.441000,0,493617,1.08067e+06,45.895,0,6.878
395,24576,100,1,2074083.201000,0,505791,1.43844e+06,46.023,0,6.675
395,49152,0,1,857378.614000,0,856919,188.561,45.083,0,6.554
395,49152,25,1,1687641.660000,0,902920,720023,46.387,0,6.498
395,49152,50,1,2548534.595000,0,947686,1.47017e+06,46.128,0,6.661
395,49152,75,1,3347869.256000,0,989910,2.16169e+06,45.746,0,6.557
395,49152,100,1,4145488.776000,0,1.00892e+06,2.87524e+06,45.874,0,6.835
296,6,0,1,1240.696000,0,195.042,175.846,43.328,684.729,5.895
296,6,25,1,945.627000,0,194.563,176.221,44.039,388.328,5.988
296,6,50,1,912.854000,0,191.391,175.688,44.023,337.619,6.029
296,6,75,1,1224.518000,0,194.847,175.928,43.76,664.276,6.079
296,6,100,1,917.804000,0,194.953,176.225,44.125,358.756,6.055
296,12,0,1,1111.275000,0,302.633,177.483,43.797,439.377,6.187
296,12,25,1,1016.338000,0,299.803,245.165,43.847,278.859,5.956
296,12,50,1,1243.907000,0,307.459,366.917,44.565,356.951,6.273
296,12,75,1,1261.648000,0,309.223,422.364,44.343,315.94,6.001
296,12,100,1,1413.922000,0,316.506,544.621,44.124,325.045,6.383
296,24,0,1,1205.358000,0,511.577,176.086,43.462,326.323,6.04
296,24,25,1,1485.729000,0,521.891,427.064,44.457,319.656,6.185
296,24,50,1,1912.777000,0,578.01,759.039,46.866,325.694,6.794
296,24,75,1,2169.033000,0,548.904,952.092,44.06,401.292,6.033
296,24,100,1,2524.188000,0,572.867,1247.89,43.296,410.756,6.036
296,48,0,1,1627.356000,0,930.865,177.048,43.933,324.268,6.146
296,48,25,1,2373.341000,0,962.331,775.89,44.001,378.835,6.086
296,48,50,1,3333.177000,0,1003.66,1424.47,44.256,582.146,6.286
296,48,75,1,3742.655000,0,1048.08,2013.32,43.726,310.913,6.306
296,48,100,1,4614.081000,0,1074.99,2655.03,43.543,465.212,5.983
296,96,0,1,2509.616000,0,1779.31,177.491,44.501,349.161,6.201
296,96,25,1,3931.619000,0,1838.52,1480.49,44.043,288.195,6.088
296,96,50,1,5531.521000,0,1925.07,2838.57,44.429,320.341,6.294
296,96,75,1,7136.812000,0,2039.59,4189.8,43.829,335.822,6.163
296,96,100,1,8600.817000,0,2080.75,5496.69,44.301,336.964,6.304
296,192,0,1,4208.253000,0,3457.66,178.47,44.14,368.72,6.152
296,192,25,1,7300.590000,0,3594.2,2892.4,43.983,363.751,6.207
296,192,50,1,10531.867000,0,3746.62,5658.32,43.613,428.869,6.001
296,192,75,1,13663.381000,0,3979.17,8374.42,44.223,360.123,6.416
296,192,100,1,16823.409000,0,4088.57,11125.4,43.203,407.023,6.039
296,384,0,1,7657.729000,0,6816.58,178.957,44.354,454.317,6.198
296,384,25,1,13912.028000,0,7102.5,5734.69,44.011,366.621,6.074
296,384,50,1,20259.343000,0,7427.34,11317.8,43.952,309.228,6.003
296,384,75,1,26751.699000,0,7870.18,16834.8,43.896,341.006,6.482
296,384,100,1,32859.560000,0,8020.26,22336.1,44.226,302.425,6.457
296,768,0,1,14133.986000,0,13449.2,179.064,43.875,297.146,6.293
296,768,25,1,27070.149000,0,14181.9,11337,43.663,335.312,6.396
296,768,50,1,40111.353000,0,14829.7,22695,43.848,363.84,6.248
296,768,75,1,52765.075000,0,15572.8,33687.5,42.915,288.055,6.044
296,768,100,1,65444.760000,0,15956,44922.7,43.726,320.591,6.176
296,1536,0,1,28125.389000,0,27328.4,181.191,44.565,395.397,6.492
296,1536,25,1,53234.085000,0,28096.7,22592.6,43.84,323.192,6.461
296,1536,50,1,78985.605000,0,29232.1,45060.8,43.802,429.752,6.241
296,1536,75,1,106183.830000,0,31169.5,68334.2,44.142,392.498,6.382
296,1536,100,1,130293.700000,0,31731.2,89995.7,43.721,309.517,6.371
296,3072,0,1,26120.494000,0,25920.6,92.816,21.784,0,3.294
296,3072,25,1,50766.809000,0,27003.3,21707.7,21.429,0,3.187
296,3072,50,1,75827.963000,0,28466.4,43355.3,21.373,0,2.978
296,3072,75,1,101158.697000,0,30087.9,65066.2,21.524,0,3.055
296,3072,100,1,124950.090000,0,30606.9,86466.2,20.975,0,2.928
296,6144,0,1,51742.205000,0,51545.8,91.818,21.364,0,3.076
296,6144,25,1,101788.022000,0,54296.1,43476.2,21.269,0,3.01
296,6144,50,1,150967.332000,0,56557.5,86512.5,21.531,0,3.036
296,6144,75,1,201744.807000,0,59847.5,130119,21.183,0,3.036
296,6144,100,1,253771.376000,0,61199.4,176861,21.528,0,3.043
296,12288,0,1,215948.332000,0,215064,182.747,44.631,479.983,6.515
296,12288,25,1,422436.080000,0,224615,181142,43.556,311.463,6.075
296,12288,50,1,625400.506000,0,233893,358816,44.968,354.616,6.517
296,12288,75,1,835434.772000,0,247583,539012,45.354,335.571,6.56
296,12288,100,1,1038212.702000,0,254358,718865,45.216,382.794,6.73
296,24576,0,1,426780.121000,0,425911,183.976,44.99,459.404,6.937
296,24576,25,1,839216.733000,0,446750,359628,44.371,479.778,6.448
296,24576,50,1,1249819.104000,0,466507,718476,44.859,364.402,6.772
296,24576,75,1,1672521.366000,0,493129,1.08195e+06,45.25,327.505,6.473
296,24576,100,1,2095464.840000,0,511544,1.45361e+06,46.275,357.715,6.683
296,49152,0,1,861155.653000,0,860225,185.748,44.727,469.301,6.832
296,49152,25,1,1688411.868000,0,902616,720603,45.485,584.024,6.819
296,49152,50,1,2508479.305000,0,940183,1.4385e+06,44.742,411.592,5.986
296,49152,75,1,3323433.665000,0,974547,2.15223e+06,45.183,390.435,6.152
296,49152,100,1,4143260.358000,0,1.00758e+06,2.87437e+06,45.27,387.559,5.959
197,6,0,1,1158.270000,0,193.083,174.378,42.41,623.772,5.607
197,6,25,1,1022.917000,0,193.562,174.815,42.141,482.519,5.511
197,6,50,1,1011.356000,0,192.734,174.369,42.408,478.065,5.558
197,6,75,1,1012.512000,0,193.33,174.032,42.471,479.888,5.562
197,6,100,1,1031.362000,0,192.542,174.186,42.521,501.048,5.544
197,12,0,1,1168.918000,0,298.631,174.609,42.324,531.009,5.558
197,12,25,1,1132.923000,0,300.144,241.89,42.969,418.922,5.506
197,12,50,1,1691.795000,0,307.677,359.491,42.658,840.559,5.43
197,12,75,1,1492.798000,0,308.857,418.179,42.17,567.593,5.611
197,12,100,1,1716.853000,0,316.157,537.056,42.646,661.114,5.647
197,24,0,1,1313.217000,0,509.942,174.425,42.433,462.045,5.477
197,24,25,1,1621.874000,0,523.261,420.064,42.878,483.652,5.541
197,24,50,1,1899.804000,0,539.247,715.045,42.608,425.084,5.68
197,24,75,1,2188.831000,0,547.781,947.696,41.894,452.533,5.479
197,24,100,1,2524.449000,0,572.437,1243.57,42.366,440.107,5.536
197,48,0,1,1883.239000,0,933.575,175.768,42.67,603.449,5.533
197,48,25,1,2543.959000,0,961.018,771.664,43.098,584.544,5.687
197,48,50,1,3234.345000,0,998.316,1414.87,42.341,531.277,5.516
197,48,75,1,3810.669000,0,1048.75,2021.92,42.252,399.573,5.386
197,48,100,1,4636.258000,0,1071.46,2649.85,42.259,501.602,5.299
197,96,0,1,2840.101000,0,1778.04,175.682,42.475,699.186,5.532
197,96,25,1,4101.629000,0,1838.91,1475.94,42.02,494.396,5.362
197,96,50,1,5607.492000,0,1916.8,2838.06,43.479,402.362,6.224
197,96,75,1,7279.049000,0,2026.96,4134.08,42.563,562.241,5.723
197,96,100,1,8796.255000,0,2069.24,5474.69,42.186,598.815,5.362
197,192,0,1,4407.770000,0,3446.69,175.702,42.424,604.901,5.562
197,192,25,1,7330.506000,0,3591.11,2895.09,41.84,421.358,5.378
197,192,50,1,10608.158000,0,3763.44,5663.54,42.412,512.06,5.315
197,192,75,1,13717.809000,0,3966.65,8338.47,42.034,502.421,5.257
197,192,100,1,16866.589000,0,4049.12,11099.1,41.308,559.624,5.247
197,384,0,1,7592.897000,0,6800.49,176.615,42.86,438.478,5.436
197,384,25,1,13778.477000,0,6949.12,5693.09,41.533,454.421,5.187
197,384,50,1,20316.785000,0,7419.26,11281.5,41.654,439.427,5.277
197,384,75,1,26943.478000,0,7828.38,16940.4,41.809,502.951,5.213
197,384,100,1,33258.387000,0,8046.79,22381.2,41.481,659.451,5.266
197,768,0,1,14268.971000,0,13474.1,176.2,42.288,426.044,5.668
197,768,25,1,27091.679000,0,14063.8,11322.9,41.907,522.053,5.434
197,768,50,1,39935.372000,0,14699.2,22509.9,41.848,544.411,5.37
197,768,75,1,53113.172000,0,15613.9,33830.4,41.745,472.646,5.273
197,768,100,1,65647.539000,0,16024.9,44912,41.557,518.615,5.238
197,1536,0,1,27861.314000,0,27041,176.948,42.568,465.928,5.435
197,1536,25,1,53503.847000,0,28238.4,22623.1,41.25,451.554,5.232
197,1536,50,1,79155.524000,0,29378.2,45031.4,41.956,542.208,5.507
197,1536,75,1,105412.642000,0,31143.3,67466.9,41.952,591.699,5.569
197,1536,100,1,131870.092000,0,32088.9,90994,41.713,510.461,5.255
197,3072,0,1,26202.058000,0,26025.3,88.64,21.339,0,2.653
197,3072,25,1,50982.251000,0,27216,21729.5,20.843,0,2.577
197,3072,50,1,75702.112000,0,28327.5,43367.3,20.801,0,2.571
197,3072,75,1,101018.060000,0,30124,64918.5,21.528,0,3.224
197,3072,100,1,126091.166000,0,30722.9,87438.4,20.812,0,2.659
197,6144,0,1,52525.299000,0,52344.8,90.742,21.619,0,2.756
197,6144,25,1,101631.778000,0,54215.1,43416.5,20.42,0,2.631
197,6144,50,1,151388.486000,0,56755.6,86736.8,20.505,0,2.502
197,6144,75,1,202016.307000,0,60071.5,130182,20.785,0,2.576
197,6144,100,1,250583.529000,0,61536,173391,21.034,0,2.683
197,12288,0,1,217196.134000,0,216295,180.333,42.762,537.027,5.662
197,12288,25,1,423240.526000,0,223963,182096,43.277,661.904,6.399
197,12288,50,1,633761.330000,0,234981,365681,43.425,584.242,6.259
197,12288,75,1,835415.690000,0,247605,538964,43.859,476.41,6.385
197,12288,100,1,1039466.525000,0,254324,720025,44.547,570.53,6.518
197,24576,0,1,432889.849000,0,431952,182.879,43.881,529.434,6.551
197,24576,25,1,841158.788000,0,447861,360282,43.971,590.23,6.443
197,24576,50,1,1252051.175000,0,467592,719073,45.186,631.905,6.697
197,24576,75,1,1672329.335000,0,494668,1.07992e+06,44.933,478.766,6.504
197,24576,100,1,2072071.784000,0,504153,1.43789e+06,44.83,502.232,6.668
197,49152,0,1,869412.542000,0,868382,186.468,44.207,619.687,6.629
197,49152,25,1,1671120.764000,0,889869,716060,44.575,557.79,6.527
197,49152,50,1,2578503.596000,0,954478,1.49082e+06,45.329,477.917,6.642
197,49152,75,1,3350827.584000,0,989318,2.16426e+06,45.96,549.902,6.964
197,49152,100,1,4156784.062000,0,1.01649e+06,2.87876e+06,45.263,569.831,6.688
79,6,0,1,954.621000,0,195.021,175.375,43.045,397.151,5.788
79,6,25,1,986.139000,0,194.37,175.852,43.041,419.059,5.63
79,6,50,1,1049.826000,0,191.014,175.426,43.229,497.341,5.687
79,6,75,1,957.070000,0,195.252,175.534,43.562,398.887,5.778
79,6,100,1,1168.750000,0,196.283,175.125,42.611,612.101,5.721
79,12,0,1,1282.062000,0,302.453,177.247,43.094,611.206,5.823
79,12,25,1,1541.268000,0,302.278,247.129,43.701,796.089,5.914
79,12,50,1,1644.890000,0,308.978,367.694,44.37,747.233,6.302
79,12,75,1,1710.352000,0,309.95,422.585,42.999,764.632,5.763
79,12,100,1,1768.156000,0,315.556,540.979,43.632,640.576,5.929
79,24,0,1,1412.867000,0,509.867,177.106,43.474,528.506,5.873
79,24,25,1,1565.289000,0,521.434,427.384,44.497,400.161,5.83
79,24,50,1,1885.181000,0,540.731,717.208,43.164,382.951,5.917
79,24,75,1,2125.131000,0,546.044,954.697,43.491,353.36,6.156
79,24,100,1,2563.905000,0,571.496,1247.74,43.734,447.152,6.126
79,48,0,1,1851.570000,0,935.287,177.828,44.043,537.775,6.115
79,48,25,1,2671.030000,0,959.089,775.906,42.871,682.696,5.788
79,48,50,1,3078.177000,0,996.438,1423.01,43.538,343.754,6.081
79,48,75,1,3875.301000,0,1048.82,2014.91,43.892,441.024,5.974
79,48,100,1,4663.215000,0,1070.52,2658.07,43.81,503.825,6.223
79,96,0,1,2651.857000,0,1779.21,179.589,44.616,466.833,6.42
79,96,25,1,3955.775000,0,1839.48,1482.02,43.352,313.901,5.976
79,96,50,1,5820.368000,0,1939.29,2888.13,44.414,537.539,6.187
79,96,75,1,7201.880000,0,2021.41,4127.3,43.834,475.97,6.236
79,96,100,1,8696.059000,0,2073.91,5494.38,44.566,428.411,6.428
79,192,0,1,4618.325000,0,3458.72,181.074,44.712,770.406,6.109
79,192,25,1,7461.042000,0,3585.4,2895.36,43.315,511.273,5.927
79,192,50,1,10662.619000,0,3741.28,5655.59,43.607,568.143,5.908
79,192,75,1,13602.903000,0,3976.36,8363.03,43.595,315.653,6.224
79,192,100,1,16836.039000,0,4065,11105.5,43.346,467.994,6.447
79,384,0,1,7748.748000,0,6920.36,180.515,44.363,435.113,6.331
79,384,25,1,14179.497000,0,7095.2,5722.21,43.681,653.935,6.26
79,384,50,1,20399.235000,0,7437.3,11284.7,43.471,470.247,6.064
79,384,75,1,26718.546000,0,7837.14,16802.7,43.13,374.862,6.133
79,384,100,1,33086.828000,0,8055.08,22444.1,43.515,381.043,6.046
79,768,0,1,14276.801000,0,13469.7,178.326,43.756,417.679,6.073
79,768,25,1,27270.953000,0,14060.8,11378.7,44.86,602.094,6.402
79,768,50,1,39943.471000,0,14757.5,22575,43.189,393.292,6.187
79,768,75,1,53089.973000,0,15632,33878.5,43.848,323.695,6.236
79,768,100,1,65557.400000,0,15959.3,45046.8,44.14,318.546,6.283
79,1536,0,1,27934.186000,0,27048,181.314,44.164,489.685,6.271
79,1536,25,1,53694.104000,0,28216.4,22832.2,44.12,417.35,6.636
79,1536,50,1,81322.427000,0,29996.2,46556.6,44.43,418.342,6.297
79,1536,75,1,105249.704000,0,31042.3,67547.4,43.562,405.312,6.022
79,1536,100,1,130758.278000,0,31966.3,90099.1,44.082,436.85,6.447
79,3072,0,1,26335.411000,0,25976.7,92.041,22.147,162.425,2.953
79,3072,25,1,51019.044000,0,27076.7,21718.2,21.98,171.155,3.065
79,3072,50,1,75831.915000,0,28271.5,43332.3,21.698,213.99,2.997
79,3072,75,1,101578.557000,0,30006.2,65373.7,22.15,197.455,3.141
79,3072,100,1,125180.912000,0,30608.3,86454.2,21.687,239.311,3.035
79,6144,0,1,52443.692000,0,52058.1,91.449,21.767,189.802,2.93
79,6144,25,1,100648.883000,0,53260.6,43119.4,21.506,212.411,3.006
79,6144,50,1,151374.271000,0,56671.7,86639,21.746,170.608,3.069
79,6144,75,1,201462.440000,0,59630.6,129829,21.89,230.732,3.071
79,6144,100,1,250675.615000,0,61282.1,173556,21.6,162.883,2.911
79,12288,0,1,217113.553000,0,216224,183.279,44.456,484.044,6.526
79,12288,25,1,424187.099000,0,224835,182289,44.145,475.797,6.307
79,12288,50,1,629091.103000,0,233955,361540,43.546,396.724,6.312
79,12288,75,1,844097.518000,0,248293,546724,45.693,485.298,6.449
79,12288,100,1,1044344.236000,0,254059,724958,45.646,529.861,6.696
79,24576,0,1,432766.570000,0,432009,183.055,44.722,351.269,6.613
79,24576,25,1,840589.013000,0,448714,359142,44.546,411.684,6.591
79,24576,50,1,1252980.578000,0,467484,720397,45.83,484.436,6.623
79,24576,75,1,1671051.693000,0,495293,1.07853e+06,45.535,399.904,6.583
79,24576,100,1,2072303.677000,0,505469,1.43704e+06,45.094,545.051,6.406
79,49152,0,1,868613.008000,0,867795,187.294,45.191,399.351,6.743
79,49152,25,1,1684137.703000,0,897554,721334,46.105,484.653,6.752
79,49152,50,1,2509549.874000,0,938636,1.44068e+06,45.33,518.801,6.841
79,49152,75,1,3339923.143000,0,987355,2.15688e+06,46.129,399.113,6.647
79,49152,100,1,4172158.645000,0,1.02126e+06,2.88654e+06,45.878,394.157,6.893
1,6,0,1,572.125000,0,203.835,184.062,52.618,0,0
1,6,25,1,556.062000,0,194.105,176.298,51.01,0,0
1,6,50,1,552.315000,0,193.444,175.226,50.165,0,0
1,6,75,1,558.440000,0,195.096,175.826,51.24,0,0
1,6,100,1,549.288000,0,194.055,174.966,50.047,0,0
1,12,0,1,664.310000,0,300.404,177.165,51.065,0,0
1,12,25,1,736.987000,0,298.836,244.539,50.22,0,0
1,12,50,1,884.611000,0,307.29,366.056,51.438,0,0
1,12,75,1,936.041000,0,309.239,419.495,50.323,0,0
1,12,100,1,1069.578000,0,319.809,542.422,49.932,0,0
1,24,0,1,880.416000,0,510.572,177.049,51.021,0,0
1,24,25,1,1167.822000,0,521.868,426.57,51.598,0,0
1,24,50,1,1503.426000,0,539.536,717.277,51.669,0,0
1,24,75,1,1768.911000,0,546.355,953.077,51.917,0,0
1,24,100,1,2130.004000,0,573.103,1255.84,51.617,0,0
1,48,0,1,1309.743000,0,935.07,177.775,51.208,0,0
1,48,25,1,1989.039000,0,959.467,776.282,51.335,0,0
1,48,50,1,2741.927000,0,999.236,1425.5,51.316,0,0
1,48,75,1,3437.724000,0,1049.4,2015,51.629,0,0
1,48,100,1,4193.542000,0,1075.3,2682.12,49.934,0,0
1,96,0,1,2153.263000,0,1767.01,178.28,51.635,0,0
1,96,25,1,3654.740000,0,1846.89,1483.47,51.619,0,0
1,96,50,1,5210.882000,0,1918.49,2843.37,50.564,0,0
1,96,75,1,6761.975000,0,2020.23,4135.21,50.688,0,0
1,96,100,1,8253.305000,0,2079.01,5474.01,50.341,0,0
1,192,0,1,3849.778000,0,3456.36,180.774,52.972,0,0
1,192,25,1,6939.100000,0,3581.66,2904.26,50.287,0,0
1,192,50,1,10086.240000,0,3729.37,5655.65,50.397,0,0
1,192,75,1,13264.916000,0,3955.82,8362.54,50.28,0,0
1,192,100,1,16351.689000,0,4045.59,11110.8,50.207,0,0
1,384,0,1,7208.294000,0,6814.08,180.158,52.105,0,0
1,384,25,1,13582.588000,0,7111.94,5763.48,50.067,0,0
1,384,50,1,19936.875000,0,7419.22,11303.6,51.078,0,0
1,384,75,1,26368.840000,0,7861.71,16789.8,51.004,0,0
1,384,100,1,32612.186000,0,8032.26,22366,51.21,0,0
1,768,0,1,13926.810000,0,13530.8,180.617,52.991,0,0
1,768,25,1,26836.022000,0,14285.1,11334.1,50.667,0,0
1,768,50,1,39438.732000,0,14692.6,22513.5,49.767,0,0
1,768,75,1,52545.153000,0,15602.2,33711.4,50.277,0,0
1,768,100,1,65032.277000,0,15819.2,44951.3,50.747,0,0
1,1536,0,1,27116.898000,0,26722.5,180.872,52.146,0,0
1,1536,25,1,52946.575000,0,28041,22663.6,49.942,0,0
1,1536,50,1,78389.685000,0,29071.2,45023.7,49.78,0,0
1,1536,75,1,105030.308000,0,31155.2,67586.3,50.43,0,0
1,1536,100,1,131381.624000,0,32208.9,90818,50.592,0,0
1,3072,0,1,26016.986000,0,25818.1,92.237,25.318,0,0
1,3072,25,1,50960.404000,0,27142.6,21756.5,24.492,0,0
1,3072,50,1,75775.874000,0,28463.2,43306.5,24.35,0,0
1,3072,75,1,101166.474000,0,30109.8,65082.5,24.156,0,0
1,3072,100,1,126024.898000,0,30857.3,87254.7,24.003,0,0
1,6144,0,1,51888.614000,0,51689.6,92.445,24.753,0,0
1,6144,25,1,101754.764000,0,54280,43459.5,24.092,0,0
1,6144,50,1,151231.975000,0,56782.2,86558.5,23.65,0,0
1,6144,75,1,201764.844000,0,59940.4,130016,23.844,0,0
1,6144,100,1,250729.173000,0,61556.2,173483,24.351,0,0
1,12288,0,1,213009.954000,0,212608,182.282,51.426,0,0
1,12288,25,1,420592.564000,0,224118,180150,50.599,0,0
1,12288,50,1,627686.291000,0,234177,361044,50.874,0,0
1,12288,75,1,835798.055000,0,247637,539592,50.948,0,0
1,12288,100,1,1038457.423000,0,254855,718946,52.312,0,0
1,24576,0,1,430672.569000,0,430268,182.821,51.928,0,0
1,24576,25,1,850213.161000,0,449772,367904,51.923,0,0
1,24576,50,1,1251856.443000,0,466492,720785,52.09,0,0
1,24576,75,1,1669742.622000,0,492825,1.07976e+06,52.559,0,0
1,24576,100,1,2077595.984000,0,504465,1.44324e+06,52.78,0,0
1,49152,0,1,855262.345000,0,854849,186.616,52.389,0,0
1,49152,25,1,1689739.604000,0,904696,720276,53.329,0,0
1,49152,50,1,2506215.413000,0,935803,1.44093e+06,52.923,0,0
1,49152,75,1,3349519.199000,0,989134,2.16462e+06,53.052,0,0
1,49152,100,1,4168854.729000,0,1.01201e+06,2.89139e+06,52.238,0,0
1 395 6 0 1 549.759000 0 198.494 179.04 44.75 0 5.646
2 395 6 25 1 539.196000 0 192.308 174.378 44.006 0 5.7
3 395 6 50 1 545.386000 0 194.225 175.032 44.278 0 5.927
4 395 6 75 1 538.549000 0 192.113 174.572 44.31 0 5.81
5 395 6 100 1 534.157000 0 190.598 173.702 43.868 0 5.602
6 395 12 0 1 650.557000 0 299.869 175.52 43.862 0 5.714
7 395 12 25 1 716.742000 0 298.586 240.301 43.899 0 5.618
8 395 12 50 1 849.290000 0 307.962 358.582 44.223 0 5.542
9 395 12 75 1 920.849000 0 310.502 420.083 43.979 0 5.738
10 395 12 100 1 1054.387000 0 315.848 536.545 43.719 0 5.646
11 395 24 0 1 856.342000 0 509.837 175.68 44.306 0 5.651
12 395 24 25 1 1126.995000 0 519.368 417.692 43.949 0 5.609
13 395 24 50 1 1484.150000 0 540.539 721.214 44.514 0 5.697
14 395 24 75 1 1739.532000 0 546.198 948.77 43.965 0 5.934
15 395 24 100 1 2082.455000 0 572.68 1242.61 43.545 0 5.583
16 395 48 0 1 1276.894000 0 931.671 175.357 43.495 0 5.582
17 395 48 25 1 1956.367000 0 959.247 770.052 43.913 0 5.817
18 395 48 50 1 2697.496000 0 999.041 1420.5 43.797 0 5.542
19 395 48 75 1 3390.911000 0 1031.05 2000.94 43.021 0 5.242
20 395 48 100 1 4136.318000 0 1075.75 2659.19 43.631 0 5.49
21 395 96 0 1 2139.228000 0 1765.26 176.071 44.43 0 5.713
22 395 96 25 1 3628.631000 0 1859.72 1475.51 43.099 0 5.36
23 395 96 50 1 5177.524000 0 1911.78 2849.03 43.327 0 5.479
24 395 96 75 1 6682.658000 0 2024.98 4125.85 43.24 0 5.318
25 395 96 100 1 8198.569000 0 2073.83 5471.32 43.511 0 5.385
26 395 192 0 1 3847.869000 0 3492.82 175.951 44.422 0 5.743
27 395 192 25 1 6906.472000 0 3597.19 2888.98 43.429 0 5.455
28 395 192 50 1 10144.337000 0 3748.11 5716.55 43.066 0 5.315
29 395 192 75 1 13237.425000 0 3974.05 8345.36 43.151 0 5.268
30 395 192 100 1 16347.043000 0 4078.72 11107.3 42.765 0 5.274
31 395 384 0 1 7120.758000 0 6766.8 175.718 43.86 0 5.581
32 395 384 25 1 13375.503000 0 6976.33 5723.54 42.71 0 5.186
33 395 384 50 1 19967.603000 0 7444.26 11334 43.624 0 5.334
34 395 384 75 1 26376.554000 0 7886.18 16809.7 43.222 0 5.304
35 395 384 100 1 32577.355000 0 8053.7 22353.8 42.574 0 5.224
36 395 768 0 1 13901.559000 0 13545.2 176.331 44.174 0 5.889
37 395 768 25 1 26675.829000 0 14140.2 11360.2 42.565 0 5.181
38 395 768 50 1 39531.541000 0 14799.1 22534.3 43.083 0 5.233
39 395 768 75 1 53427.566000 0 15832.7 34341.4 43.407 0 5.299
40 395 768 100 1 65238.720000 0 15970.5 45062.9 42.751 0 5.325
41 395 1536 0 1 27389.534000 0 26994.6 181.102 45.325 0 6.374
42 395 1536 25 1 53023.014000 0 28211.6 22604.6 43.69 0 5.518
43 395 1536 50 1 78662.469000 0 29400.7 45048.5 42.449 0 5.455
44 395 1536 75 1 105705.000000 0 31277.1 68149.6 43.251 0 5.336
45 395 1536 100 1 130351.834000 0 31837.4 90227.8 42.608 0 5.289
46 395 3072 0 1 26108.282000 0 25928.4 90.142 21.552 0 2.923
47 395 3072 25 1 51052.296000 0 27237.6 21774.2 20.862 0 2.634
48 395 3072 50 1 75797.875000 0 28424.5 43377.2 20.751 0 2.677
49 395 3072 75 1 100778.411000 0 29895.3 64948.5 20.661 0 2.665
50 395 3072 100 1 125369.237000 0 30816.9 86686.7 20.828 0 2.644
51 395 6144 0 1 51601.931000 0 51423.3 89.516 21.341 0 2.831
52 395 6144 25 1 101723.033000 0 54382.4 43360.8 20.898 0 2.637
53 395 6144 50 1 151128.302000 0 56093.5 87120.6 20.673 0 2.587
54 395 6144 75 1 201902.363000 0 60077.1 130069 20.617 0 2.717
55 395 6144 100 1 250345.872000 0 61134.3 173470 21.036 0 2.75
56 395 12288 0 1 210229.234000 0 209855 180.033 44.287 0 5.822
57 395 12288 25 1 419751.795000 0 223668 179743 43.816 0 5.547
58 395 12288 50 1 626642.153000 0 234890 359220 44.121 0 5.59
59 395 12288 75 1 834582.246000 0 247474 538499 44.078 0 5.464
60 395 12288 100 1 1037064.212000 0 254443 718016 45.52 0 6.031
61 395 24576 0 1 426136.132000 0 425732 183.552 45.022 0 6.581
62 395 24576 25 1 842067.721000 0 450599 358969 44.721 0 6.373
63 395 24576 50 1 1257499.045000 0 469033 723130 45.858 0 6.576
64 395 24576 75 1 1671219.441000 0 493617 1.08067e+06 45.895 0 6.878
65 395 24576 100 1 2074083.201000 0 505791 1.43844e+06 46.023 0 6.675
66 395 49152 0 1 857378.614000 0 856919 188.561 45.083 0 6.554
67 395 49152 25 1 1687641.660000 0 902920 720023 46.387 0 6.498
68 395 49152 50 1 2548534.595000 0 947686 1.47017e+06 46.128 0 6.661
69 395 49152 75 1 3347869.256000 0 989910 2.16169e+06 45.746 0 6.557
70 395 49152 100 1 4145488.776000 0 1.00892e+06 2.87524e+06 45.874 0 6.835
71 296 6 0 1 1240.696000 0 195.042 175.846 43.328 684.729 5.895
72 296 6 25 1 945.627000 0 194.563 176.221 44.039 388.328 5.988
73 296 6 50 1 912.854000 0 191.391 175.688 44.023 337.619 6.029
74 296 6 75 1 1224.518000 0 194.847 175.928 43.76 664.276 6.079
75 296 6 100 1 917.804000 0 194.953 176.225 44.125 358.756 6.055
76 296 12 0 1 1111.275000 0 302.633 177.483 43.797 439.377 6.187
77 296 12 25 1 1016.338000 0 299.803 245.165 43.847 278.859 5.956
78 296 12 50 1 1243.907000 0 307.459 366.917 44.565 356.951 6.273
79 296 12 75 1 1261.648000 0 309.223 422.364 44.343 315.94 6.001
80 296 12 100 1 1413.922000 0 316.506 544.621 44.124 325.045 6.383
81 296 24 0 1 1205.358000 0 511.577 176.086 43.462 326.323 6.04
82 296 24 25 1 1485.729000 0 521.891 427.064 44.457 319.656 6.185
83 296 24 50 1 1912.777000 0 578.01 759.039 46.866 325.694 6.794
84 296 24 75 1 2169.033000 0 548.904 952.092 44.06 401.292 6.033
85 296 24 100 1 2524.188000 0 572.867 1247.89 43.296 410.756 6.036
86 296 48 0 1 1627.356000 0 930.865 177.048 43.933 324.268 6.146
87 296 48 25 1 2373.341000 0 962.331 775.89 44.001 378.835 6.086
88 296 48 50 1 3333.177000 0 1003.66 1424.47 44.256 582.146 6.286
89 296 48 75 1 3742.655000 0 1048.08 2013.32 43.726 310.913 6.306
90 296 48 100 1 4614.081000 0 1074.99 2655.03 43.543 465.212 5.983
91 296 96 0 1 2509.616000 0 1779.31 177.491 44.501 349.161 6.201
92 296 96 25 1 3931.619000 0 1838.52 1480.49 44.043 288.195 6.088
93 296 96 50 1 5531.521000 0 1925.07 2838.57 44.429 320.341 6.294
94 296 96 75 1 7136.812000 0 2039.59 4189.8 43.829 335.822 6.163
95 296 96 100 1 8600.817000 0 2080.75 5496.69 44.301 336.964 6.304
96 296 192 0 1 4208.253000 0 3457.66 178.47 44.14 368.72 6.152
97 296 192 25 1 7300.590000 0 3594.2 2892.4 43.983 363.751 6.207
98 296 192 50 1 10531.867000 0 3746.62 5658.32 43.613 428.869 6.001
99 296 192 75 1 13663.381000 0 3979.17 8374.42 44.223 360.123 6.416
100 296 192 100 1 16823.409000 0 4088.57 11125.4 43.203 407.023 6.039
101 296 384 0 1 7657.729000 0 6816.58 178.957 44.354 454.317 6.198
102 296 384 25 1 13912.028000 0 7102.5 5734.69 44.011 366.621 6.074
103 296 384 50 1 20259.343000 0 7427.34 11317.8 43.952 309.228 6.003
104 296 384 75 1 26751.699000 0 7870.18 16834.8 43.896 341.006 6.482
105 296 384 100 1 32859.560000 0 8020.26 22336.1 44.226 302.425 6.457
106 296 768 0 1 14133.986000 0 13449.2 179.064 43.875 297.146 6.293
107 296 768 25 1 27070.149000 0 14181.9 11337 43.663 335.312 6.396
108 296 768 50 1 40111.353000 0 14829.7 22695 43.848 363.84 6.248
109 296 768 75 1 52765.075000 0 15572.8 33687.5 42.915 288.055 6.044
110 296 768 100 1 65444.760000 0 15956 44922.7 43.726 320.591 6.176
111 296 1536 0 1 28125.389000 0 27328.4 181.191 44.565 395.397 6.492
112 296 1536 25 1 53234.085000 0 28096.7 22592.6 43.84 323.192 6.461
113 296 1536 50 1 78985.605000 0 29232.1 45060.8 43.802 429.752 6.241
114 296 1536 75 1 106183.830000 0 31169.5 68334.2 44.142 392.498 6.382
115 296 1536 100 1 130293.700000 0 31731.2 89995.7 43.721 309.517 6.371
116 296 3072 0 1 26120.494000 0 25920.6 92.816 21.784 0 3.294
117 296 3072 25 1 50766.809000 0 27003.3 21707.7 21.429 0 3.187
118 296 3072 50 1 75827.963000 0 28466.4 43355.3 21.373 0 2.978
119 296 3072 75 1 101158.697000 0 30087.9 65066.2 21.524 0 3.055
120 296 3072 100 1 124950.090000 0 30606.9 86466.2 20.975 0 2.928
121 296 6144 0 1 51742.205000 0 51545.8 91.818 21.364 0 3.076
122 296 6144 25 1 101788.022000 0 54296.1 43476.2 21.269 0 3.01
123 296 6144 50 1 150967.332000 0 56557.5 86512.5 21.531 0 3.036
124 296 6144 75 1 201744.807000 0 59847.5 130119 21.183 0 3.036
125 296 6144 100 1 253771.376000 0 61199.4 176861 21.528 0 3.043
126 296 12288 0 1 215948.332000 0 215064 182.747 44.631 479.983 6.515
127 296 12288 25 1 422436.080000 0 224615 181142 43.556 311.463 6.075
128 296 12288 50 1 625400.506000 0 233893 358816 44.968 354.616 6.517
129 296 12288 75 1 835434.772000 0 247583 539012 45.354 335.571 6.56
130 296 12288 100 1 1038212.702000 0 254358 718865 45.216 382.794 6.73
131 296 24576 0 1 426780.121000 0 425911 183.976 44.99 459.404 6.937
132 296 24576 25 1 839216.733000 0 446750 359628 44.371 479.778 6.448
133 296 24576 50 1 1249819.104000 0 466507 718476 44.859 364.402 6.772
134 296 24576 75 1 1672521.366000 0 493129 1.08195e+06 45.25 327.505 6.473
135 296 24576 100 1 2095464.840000 0 511544 1.45361e+06 46.275 357.715 6.683
136 296 49152 0 1 861155.653000 0 860225 185.748 44.727 469.301 6.832
137 296 49152 25 1 1688411.868000 0 902616 720603 45.485 584.024 6.819
138 296 49152 50 1 2508479.305000 0 940183 1.4385e+06 44.742 411.592 5.986
139 296 49152 75 1 3323433.665000 0 974547 2.15223e+06 45.183 390.435 6.152
140 296 49152 100 1 4143260.358000 0 1.00758e+06 2.87437e+06 45.27 387.559 5.959
141 197 6 0 1 1158.270000 0 193.083 174.378 42.41 623.772 5.607
142 197 6 25 1 1022.917000 0 193.562 174.815 42.141 482.519 5.511
143 197 6 50 1 1011.356000 0 192.734 174.369 42.408 478.065 5.558
144 197 6 75 1 1012.512000 0 193.33 174.032 42.471 479.888 5.562
145 197 6 100 1 1031.362000 0 192.542 174.186 42.521 501.048 5.544
146 197 12 0 1 1168.918000 0 298.631 174.609 42.324 531.009 5.558
147 197 12 25 1 1132.923000 0 300.144 241.89 42.969 418.922 5.506
148 197 12 50 1 1691.795000 0 307.677 359.491 42.658 840.559 5.43
149 197 12 75 1 1492.798000 0 308.857 418.179 42.17 567.593 5.611
150 197 12 100 1 1716.853000 0 316.157 537.056 42.646 661.114 5.647
151 197 24 0 1 1313.217000 0 509.942 174.425 42.433 462.045 5.477
152 197 24 25 1 1621.874000 0 523.261 420.064 42.878 483.652 5.541
153 197 24 50 1 1899.804000 0 539.247 715.045 42.608 425.084 5.68
154 197 24 75 1 2188.831000 0 547.781 947.696 41.894 452.533 5.479
155 197 24 100 1 2524.449000 0 572.437 1243.57 42.366 440.107 5.536
156 197 48 0 1 1883.239000 0 933.575 175.768 42.67 603.449 5.533
157 197 48 25 1 2543.959000 0 961.018 771.664 43.098 584.544 5.687
158 197 48 50 1 3234.345000 0 998.316 1414.87 42.341 531.277 5.516
159 197 48 75 1 3810.669000 0 1048.75 2021.92 42.252 399.573 5.386
160 197 48 100 1 4636.258000 0 1071.46 2649.85 42.259 501.602 5.299
161 197 96 0 1 2840.101000 0 1778.04 175.682 42.475 699.186 5.532
162 197 96 25 1 4101.629000 0 1838.91 1475.94 42.02 494.396 5.362
163 197 96 50 1 5607.492000 0 1916.8 2838.06 43.479 402.362 6.224
164 197 96 75 1 7279.049000 0 2026.96 4134.08 42.563 562.241 5.723
165 197 96 100 1 8796.255000 0 2069.24 5474.69 42.186 598.815 5.362
166 197 192 0 1 4407.770000 0 3446.69 175.702 42.424 604.901 5.562
167 197 192 25 1 7330.506000 0 3591.11 2895.09 41.84 421.358 5.378
168 197 192 50 1 10608.158000 0 3763.44 5663.54 42.412 512.06 5.315
169 197 192 75 1 13717.809000 0 3966.65 8338.47 42.034 502.421 5.257
170 197 192 100 1 16866.589000 0 4049.12 11099.1 41.308 559.624 5.247
171 197 384 0 1 7592.897000 0 6800.49 176.615 42.86 438.478 5.436
172 197 384 25 1 13778.477000 0 6949.12 5693.09 41.533 454.421 5.187
173 197 384 50 1 20316.785000 0 7419.26 11281.5 41.654 439.427 5.277
174 197 384 75 1 26943.478000 0 7828.38 16940.4 41.809 502.951 5.213
175 197 384 100 1 33258.387000 0 8046.79 22381.2 41.481 659.451 5.266
176 197 768 0 1 14268.971000 0 13474.1 176.2 42.288 426.044 5.668
177 197 768 25 1 27091.679000 0 14063.8 11322.9 41.907 522.053 5.434
178 197 768 50 1 39935.372000 0 14699.2 22509.9 41.848 544.411 5.37
179 197 768 75 1 53113.172000 0 15613.9 33830.4 41.745 472.646 5.273
180 197 768 100 1 65647.539000 0 16024.9 44912 41.557 518.615 5.238
181 197 1536 0 1 27861.314000 0 27041 176.948 42.568 465.928 5.435
182 197 1536 25 1 53503.847000 0 28238.4 22623.1 41.25 451.554 5.232
183 197 1536 50 1 79155.524000 0 29378.2 45031.4 41.956 542.208 5.507
184 197 1536 75 1 105412.642000 0 31143.3 67466.9 41.952 591.699 5.569
185 197 1536 100 1 131870.092000 0 32088.9 90994 41.713 510.461 5.255
186 197 3072 0 1 26202.058000 0 26025.3 88.64 21.339 0 2.653
187 197 3072 25 1 50982.251000 0 27216 21729.5 20.843 0 2.577
188 197 3072 50 1 75702.112000 0 28327.5 43367.3 20.801 0 2.571
189 197 3072 75 1 101018.060000 0 30124 64918.5 21.528 0 3.224
190 197 3072 100 1 126091.166000 0 30722.9 87438.4 20.812 0 2.659
191 197 6144 0 1 52525.299000 0 52344.8 90.742 21.619 0 2.756
192 197 6144 25 1 101631.778000 0 54215.1 43416.5 20.42 0 2.631
193 197 6144 50 1 151388.486000 0 56755.6 86736.8 20.505 0 2.502
194 197 6144 75 1 202016.307000 0 60071.5 130182 20.785 0 2.576
195 197 6144 100 1 250583.529000 0 61536 173391 21.034 0 2.683
196 197 12288 0 1 217196.134000 0 216295 180.333 42.762 537.027 5.662
197 197 12288 25 1 423240.526000 0 223963 182096 43.277 661.904 6.399
198 197 12288 50 1 633761.330000 0 234981 365681 43.425 584.242 6.259
199 197 12288 75 1 835415.690000 0 247605 538964 43.859 476.41 6.385
200 197 12288 100 1 1039466.525000 0 254324 720025 44.547 570.53 6.518
201 197 24576 0 1 432889.849000 0 431952 182.879 43.881 529.434 6.551
202 197 24576 25 1 841158.788000 0 447861 360282 43.971 590.23 6.443
203 197 24576 50 1 1252051.175000 0 467592 719073 45.186 631.905 6.697
204 197 24576 75 1 1672329.335000 0 494668 1.07992e+06 44.933 478.766 6.504
205 197 24576 100 1 2072071.784000 0 504153 1.43789e+06 44.83 502.232 6.668
206 197 49152 0 1 869412.542000 0 868382 186.468 44.207 619.687 6.629
207 197 49152 25 1 1671120.764000 0 889869 716060 44.575 557.79 6.527
208 197 49152 50 1 2578503.596000 0 954478 1.49082e+06 45.329 477.917 6.642
209 197 49152 75 1 3350827.584000 0 989318 2.16426e+06 45.96 549.902 6.964
210 197 49152 100 1 4156784.062000 0 1.01649e+06 2.87876e+06 45.263 569.831 6.688
211 79 6 0 1 954.621000 0 195.021 175.375 43.045 397.151 5.788
212 79 6 25 1 986.139000 0 194.37 175.852 43.041 419.059 5.63
213 79 6 50 1 1049.826000 0 191.014 175.426 43.229 497.341 5.687
214 79 6 75 1 957.070000 0 195.252 175.534 43.562 398.887 5.778
215 79 6 100 1 1168.750000 0 196.283 175.125 42.611 612.101 5.721
216 79 12 0 1 1282.062000 0 302.453 177.247 43.094 611.206 5.823
217 79 12 25 1 1541.268000 0 302.278 247.129 43.701 796.089 5.914
218 79 12 50 1 1644.890000 0 308.978 367.694 44.37 747.233 6.302
219 79 12 75 1 1710.352000 0 309.95 422.585 42.999 764.632 5.763
220 79 12 100 1 1768.156000 0 315.556 540.979 43.632 640.576 5.929
221 79 24 0 1 1412.867000 0 509.867 177.106 43.474 528.506 5.873
222 79 24 25 1 1565.289000 0 521.434 427.384 44.497 400.161 5.83
223 79 24 50 1 1885.181000 0 540.731 717.208 43.164 382.951 5.917
224 79 24 75 1 2125.131000 0 546.044 954.697 43.491 353.36 6.156
225 79 24 100 1 2563.905000 0 571.496 1247.74 43.734 447.152 6.126
226 79 48 0 1 1851.570000 0 935.287 177.828 44.043 537.775 6.115
227 79 48 25 1 2671.030000 0 959.089 775.906 42.871 682.696 5.788
228 79 48 50 1 3078.177000 0 996.438 1423.01 43.538 343.754 6.081
229 79 48 75 1 3875.301000 0 1048.82 2014.91 43.892 441.024 5.974
230 79 48 100 1 4663.215000 0 1070.52 2658.07 43.81 503.825 6.223
231 79 96 0 1 2651.857000 0 1779.21 179.589 44.616 466.833 6.42
232 79 96 25 1 3955.775000 0 1839.48 1482.02 43.352 313.901 5.976
233 79 96 50 1 5820.368000 0 1939.29 2888.13 44.414 537.539 6.187
234 79 96 75 1 7201.880000 0 2021.41 4127.3 43.834 475.97 6.236
235 79 96 100 1 8696.059000 0 2073.91 5494.38 44.566 428.411 6.428
236 79 192 0 1 4618.325000 0 3458.72 181.074 44.712 770.406 6.109
237 79 192 25 1 7461.042000 0 3585.4 2895.36 43.315 511.273 5.927
238 79 192 50 1 10662.619000 0 3741.28 5655.59 43.607 568.143 5.908
239 79 192 75 1 13602.903000 0 3976.36 8363.03 43.595 315.653 6.224
240 79 192 100 1 16836.039000 0 4065 11105.5 43.346 467.994 6.447
241 79 384 0 1 7748.748000 0 6920.36 180.515 44.363 435.113 6.331
242 79 384 25 1 14179.497000 0 7095.2 5722.21 43.681 653.935 6.26
243 79 384 50 1 20399.235000 0 7437.3 11284.7 43.471 470.247 6.064
244 79 384 75 1 26718.546000 0 7837.14 16802.7 43.13 374.862 6.133
245 79 384 100 1 33086.828000 0 8055.08 22444.1 43.515 381.043 6.046
246 79 768 0 1 14276.801000 0 13469.7 178.326 43.756 417.679 6.073
247 79 768 25 1 27270.953000 0 14060.8 11378.7 44.86 602.094 6.402
248 79 768 50 1 39943.471000 0 14757.5 22575 43.189 393.292 6.187
249 79 768 75 1 53089.973000 0 15632 33878.5 43.848 323.695 6.236
250 79 768 100 1 65557.400000 0 15959.3 45046.8 44.14 318.546 6.283
251 79 1536 0 1 27934.186000 0 27048 181.314 44.164 489.685 6.271
252 79 1536 25 1 53694.104000 0 28216.4 22832.2 44.12 417.35 6.636
253 79 1536 50 1 81322.427000 0 29996.2 46556.6 44.43 418.342 6.297
254 79 1536 75 1 105249.704000 0 31042.3 67547.4 43.562 405.312 6.022
255 79 1536 100 1 130758.278000 0 31966.3 90099.1 44.082 436.85 6.447
256 79 3072 0 1 26335.411000 0 25976.7 92.041 22.147 162.425 2.953
257 79 3072 25 1 51019.044000 0 27076.7 21718.2 21.98 171.155 3.065
258 79 3072 50 1 75831.915000 0 28271.5 43332.3 21.698 213.99 2.997
259 79 3072 75 1 101578.557000 0 30006.2 65373.7 22.15 197.455 3.141
260 79 3072 100 1 125180.912000 0 30608.3 86454.2 21.687 239.311 3.035
261 79 6144 0 1 52443.692000 0 52058.1 91.449 21.767 189.802 2.93
262 79 6144 25 1 100648.883000 0 53260.6 43119.4 21.506 212.411 3.006
263 79 6144 50 1 151374.271000 0 56671.7 86639 21.746 170.608 3.069
264 79 6144 75 1 201462.440000 0 59630.6 129829 21.89 230.732 3.071
265 79 6144 100 1 250675.615000 0 61282.1 173556 21.6 162.883 2.911
266 79 12288 0 1 217113.553000 0 216224 183.279 44.456 484.044 6.526
267 79 12288 25 1 424187.099000 0 224835 182289 44.145 475.797 6.307
268 79 12288 50 1 629091.103000 0 233955 361540 43.546 396.724 6.312
269 79 12288 75 1 844097.518000 0 248293 546724 45.693 485.298 6.449
270 79 12288 100 1 1044344.236000 0 254059 724958 45.646 529.861 6.696
271 79 24576 0 1 432766.570000 0 432009 183.055 44.722 351.269 6.613
272 79 24576 25 1 840589.013000 0 448714 359142 44.546 411.684 6.591
273 79 24576 50 1 1252980.578000 0 467484 720397 45.83 484.436 6.623
274 79 24576 75 1 1671051.693000 0 495293 1.07853e+06 45.535 399.904 6.583
275 79 24576 100 1 2072303.677000 0 505469 1.43704e+06 45.094 545.051 6.406
276 79 49152 0 1 868613.008000 0 867795 187.294 45.191 399.351 6.743
277 79 49152 25 1 1684137.703000 0 897554 721334 46.105 484.653 6.752
278 79 49152 50 1 2509549.874000 0 938636 1.44068e+06 45.33 518.801 6.841
279 79 49152 75 1 3339923.143000 0 987355 2.15688e+06 46.129 399.113 6.647
280 79 49152 100 1 4172158.645000 0 1.02126e+06 2.88654e+06 45.878 394.157 6.893
281 1 6 0 1 572.125000 0 203.835 184.062 52.618 0 0
282 1 6 25 1 556.062000 0 194.105 176.298 51.01 0 0
283 1 6 50 1 552.315000 0 193.444 175.226 50.165 0 0
284 1 6 75 1 558.440000 0 195.096 175.826 51.24 0 0
285 1 6 100 1 549.288000 0 194.055 174.966 50.047 0 0
286 1 12 0 1 664.310000 0 300.404 177.165 51.065 0 0
287 1 12 25 1 736.987000 0 298.836 244.539 50.22 0 0
288 1 12 50 1 884.611000 0 307.29 366.056 51.438 0 0
289 1 12 75 1 936.041000 0 309.239 419.495 50.323 0 0
290 1 12 100 1 1069.578000 0 319.809 542.422 49.932 0 0
291 1 24 0 1 880.416000 0 510.572 177.049 51.021 0 0
292 1 24 25 1 1167.822000 0 521.868 426.57 51.598 0 0
293 1 24 50 1 1503.426000 0 539.536 717.277 51.669 0 0
294 1 24 75 1 1768.911000 0 546.355 953.077 51.917 0 0
295 1 24 100 1 2130.004000 0 573.103 1255.84 51.617 0 0
296 1 48 0 1 1309.743000 0 935.07 177.775 51.208 0 0
297 1 48 25 1 1989.039000 0 959.467 776.282 51.335 0 0
298 1 48 50 1 2741.927000 0 999.236 1425.5 51.316 0 0
299 1 48 75 1 3437.724000 0 1049.4 2015 51.629 0 0
300 1 48 100 1 4193.542000 0 1075.3 2682.12 49.934 0 0
301 1 96 0 1 2153.263000 0 1767.01 178.28 51.635 0 0
302 1 96 25 1 3654.740000 0 1846.89 1483.47 51.619 0 0
303 1 96 50 1 5210.882000 0 1918.49 2843.37 50.564 0 0
304 1 96 75 1 6761.975000 0 2020.23 4135.21 50.688 0 0
305 1 96 100 1 8253.305000 0 2079.01 5474.01 50.341 0 0
306 1 192 0 1 3849.778000 0 3456.36 180.774 52.972 0 0
307 1 192 25 1 6939.100000 0 3581.66 2904.26 50.287 0 0
308 1 192 50 1 10086.240000 0 3729.37 5655.65 50.397 0 0
309 1 192 75 1 13264.916000 0 3955.82 8362.54 50.28 0 0
310 1 192 100 1 16351.689000 0 4045.59 11110.8 50.207 0 0
311 1 384 0 1 7208.294000 0 6814.08 180.158 52.105 0 0
312 1 384 25 1 13582.588000 0 7111.94 5763.48 50.067 0 0
313 1 384 50 1 19936.875000 0 7419.22 11303.6 51.078 0 0
314 1 384 75 1 26368.840000 0 7861.71 16789.8 51.004 0 0
315 1 384 100 1 32612.186000 0 8032.26 22366 51.21 0 0
316 1 768 0 1 13926.810000 0 13530.8 180.617 52.991 0 0
317 1 768 25 1 26836.022000 0 14285.1 11334.1 50.667 0 0
318 1 768 50 1 39438.732000 0 14692.6 22513.5 49.767 0 0
319 1 768 75 1 52545.153000 0 15602.2 33711.4 50.277 0 0
320 1 768 100 1 65032.277000 0 15819.2 44951.3 50.747 0 0
321 1 1536 0 1 27116.898000 0 26722.5 180.872 52.146 0 0
322 1 1536 25 1 52946.575000 0 28041 22663.6 49.942 0 0
323 1 1536 50 1 78389.685000 0 29071.2 45023.7 49.78 0 0
324 1 1536 75 1 105030.308000 0 31155.2 67586.3 50.43 0 0
325 1 1536 100 1 131381.624000 0 32208.9 90818 50.592 0 0
326 1 3072 0 1 26016.986000 0 25818.1 92.237 25.318 0 0
327 1 3072 25 1 50960.404000 0 27142.6 21756.5 24.492 0 0
328 1 3072 50 1 75775.874000 0 28463.2 43306.5 24.35 0 0
329 1 3072 75 1 101166.474000 0 30109.8 65082.5 24.156 0 0
330 1 3072 100 1 126024.898000 0 30857.3 87254.7 24.003 0 0
331 1 6144 0 1 51888.614000 0 51689.6 92.445 24.753 0 0
332 1 6144 25 1 101754.764000 0 54280 43459.5 24.092 0 0
333 1 6144 50 1 151231.975000 0 56782.2 86558.5 23.65 0 0
334 1 6144 75 1 201764.844000 0 59940.4 130016 23.844 0 0
335 1 6144 100 1 250729.173000 0 61556.2 173483 24.351 0 0
336 1 12288 0 1 213009.954000 0 212608 182.282 51.426 0 0
337 1 12288 25 1 420592.564000 0 224118 180150 50.599 0 0
338 1 12288 50 1 627686.291000 0 234177 361044 50.874 0 0
339 1 12288 75 1 835798.055000 0 247637 539592 50.948 0 0
340 1 12288 100 1 1038457.423000 0 254855 718946 52.312 0 0
341 1 24576 0 1 430672.569000 0 430268 182.821 51.928 0 0
342 1 24576 25 1 850213.161000 0 449772 367904 51.923 0 0
343 1 24576 50 1 1251856.443000 0 466492 720785 52.09 0 0
344 1 24576 75 1 1669742.622000 0 492825 1.07976e+06 52.559 0 0
345 1 24576 100 1 2077595.984000 0 504465 1.44324e+06 52.78 0 0
346 1 49152 0 1 855262.345000 0 854849 186.616 52.389 0 0
347 1 49152 25 1 1689739.604000 0 904696 720276 53.329 0 0
348 1 49152 50 1 2506215.413000 0 935803 1.44093e+06 52.923 0 0
349 1 49152 75 1 3349519.199000 0 989134 2.16462e+06 53.052 0 0
350 1 49152 100 1 4168854.729000 0 1.01201e+06 2.89139e+06 52.238 0 0

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,160 @@
\relax
\providecommand\babel@aux[2]{}
\@nameuse{bbl@beforestart}
\providecommand\hyper@newdestlabel[2]{}
\providecommand\HyperFirstAtBeginDocument{\AtBeginDocument}
\HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined
\global\let\oldnewlabel\newlabel
\gdef\newlabel#1#2{\newlabelxx{#1}#2}
\gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}}
\AtEndDocument{\ifx\hyper@anchor\@undefined
\let\newlabel\oldnewlabel
\fi}
\fi}
\global\let\hyper@last\relax
\gdef\HyperFirstAtBeginDocument#1{#1}
\providecommand\HyField@AuxAddToFields[1]{}
\providecommand\HyField@AuxAddToCoFields[2]{}
\citation{9678822}
\citation{7993827}
\citation{8652334}
\citation{baloyi_guidelines_2019}
\citation{allman_complying_2006}
\citation{j_hale_compliance_nodate}
\citation{ou_scalable_2006}
\citation{CPSIOT}
\citation{ming_jo}
\citation{cook_rage_2018}
\citation{pacheco_introduction_2011}
\citation{ainsworth_graph_2016}
\citation{yao_efficient_2018}
\citation{zhang_boosting_2017}
\citation{dai_fpgp_2016}
\babel@aux{nil}{}
\@writefile{toc}{\contentsline {section}{\numberline {I}Introduction}{1}{section.1}\protected@file@percent }
\newlabel{sec:Intro}{{I}{1}{Introduction}{section.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {II}Related Works}{1}{section.2}\protected@file@percent }
\newlabel{sec:rel_works}{{II}{1}{Related Works}{section.2}{}}
\citation{arifuzzaman_fast_2015}
\citation{yu_construction_2018}
\citation{liakos_memory-optimized_2016}
\citation{liakos_memory-optimized_2016}
\citation{liakos_memory-optimized_2016}
\citation{balaji_graph_2016}
\citation{noauthor_parmetis_nodate}
\citation{noauthor_boost_nodate}
\citation{ou_scalable_2006}
\citation{cook_scalable_2016}
\citation{li_concurrency_2019}
\citation{li_concurrency_2019}
\citation{9150145}
\citation{7087377}
\citation{li_concurrency_2019}
\citation{9150145}
\citation{7087377}
\@writefile{toc}{\contentsline {section}{\numberline {III}Necessary Components}{2}{section.3}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {\mbox {III-A}}Serialization}{2}{subsection.3.1}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {IV}Implementation of the Tasking Approach}{2}{section.4}\protected@file@percent }
\newlabel{sec:Tasking-Approach}{{IV}{2}{Implementation of the Tasking Approach}{section.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {\mbox {IV-A}}Algorithm Design}{2}{subsection.4.1}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Overview of the Tasking Pipeline for the Attack and Compliance Graph Generation Process}}{3}{figure.1}\protected@file@percent }
\newlabel{fig:tasks}{{1}{3}{Overview of the Tasking Pipeline for the Attack and Compliance Graph Generation Process}{figure.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {\mbox {IV-B}}Communication Structure}{3}{subsection.4.2}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Node Allocation for each Task}}{3}{figure.2}\protected@file@percent }
\newlabel{fig:node-alloc}{{2}{3}{Node Allocation for each Task}{figure.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {\mbox {IV-C}}Task Breakdown}{3}{subsection.4.3}\protected@file@percent }
\@writefile{toc}{\contentsline {subsubsection}{\numberline {\mbox {IV-C}1}Task 0}{3}{subsubsection.4.3.1}\protected@file@percent }
\@writefile{toc}{\contentsline {subsubsection}{\numberline {\mbox {IV-C}2}Task 1}{3}{subsubsection.4.3.2}\protected@file@percent }
\citation{10124989}
\@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Data Distribution of Task One}}{4}{figure.3}\protected@file@percent }
\newlabel{fig:Task1-Data-Dist}{{3}{4}{Data Distribution of Task One}{figure.3}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces Communication From Task 1 to Task 2 when the Number of Nodes Allocated is Equal}}{4}{figure.4}\protected@file@percent }
\newlabel{fig:Task1-Case1}{{4}{4}{Communication From Task 1 to Task 2 when the Number of Nodes Allocated is Equal}{figure.4}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {\mbox {IV-C}3}Task 2}{4}{subsubsection.4.3.3}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces Task 1 to Task 2 Communication, Case 2}}{4}{figure.5}\protected@file@percent }
\newlabel{fig:Task1-Case2}{{5}{4}{Task 1 to Task 2 Communication, Case 2}{figure.5}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {\mbox {IV-C}4}Task 3}{4}{subsubsection.4.3.4}\protected@file@percent }
\newlabel{sec:T4T5}{{\mbox {IV-C}5}{4}{Task 4 and Task 5}{subsubsection.4.3.5}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {\mbox {IV-C}5}Task 4 and Task 5}{4}{subsubsection.4.3.5}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {\mbox {IV-D}}MPI Tags}{4}{subsection.4.4}\protected@file@percent }
\newlabel{sec:tasking-tag}{{\mbox {IV-D}}{4}{MPI Tags}{subsection.4.4}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces Program Flow of Synchronous Firing in Task 2}}{5}{figure.6}\protected@file@percent }
\newlabel{fig:sync-fire}{{6}{5}{Program Flow of Synchronous Firing in Task 2}{figure.6}{}}
\@writefile{lot}{\contentsline {table}{\numberline {I}{\ignorespaces MPI Tags for the MPI Tasking Approach}}{5}{table.1}\protected@file@percent }
\newlabel{table:tasking-tag}{{I}{5}{MPI Tags for the MPI Tasking Approach}{table.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {V}Performance Expectations and Use Cases}{5}{section.5}\protected@file@percent }
\newlabel{sec:Task-perf-expec}{{V}{5}{Performance Expectations and Use Cases}{section.5}{}}
\@writefile{toc}{\contentsline {section}{\numberline {VI}Experimental Setup}{5}{section.6}\protected@file@percent }
\@writefile{lot}{\contentsline {table}{\numberline {II}{\ignorespaces Task Descriptions and Performance Notes}}{6}{table.2}\protected@file@percent }
\newlabel{table:tasking-gen-perf}{{II}{6}{Task Descriptions and Performance Notes}{table.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {\mbox {VI-A}}Number of Exploits}{6}{subsection.6.1}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {\mbox {VI-B}}Applicability of Exploits}{6}{subsection.6.2}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {7}{\ignorespaces Example of a Not Applicable Exploit for the MPI Tasking Testing}}{6}{figure.7}\protected@file@percent }
\newlabel{fig:NA-exp}{{7}{6}{Example of a Not Applicable Exploit for the MPI Tasking Testing}{figure.7}{}}
\citation{cook_rage_2018}
\citation{li_concurrency_2019}
\citation{li_combining_2019}
\citation{Slurm}
\@writefile{lof}{\contentsline {figure}{\numberline {8}{\ignorespaces Example of an Artificially Applicable Exploit for the MPI Tasking Testing}}{7}{figure.8}\protected@file@percent }
\newlabel{fig:Appl-exp}{{8}{7}{Example of an Artificially Applicable Exploit for the MPI Tasking Testing}{figure.8}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {\mbox {VI-C}}Database Load}{7}{subsection.6.3}\protected@file@percent }
\newlabel{sec:db-stor}{{\mbox {VI-C}}{7}{Database Load}{subsection.6.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {\mbox {VI-D}}Testing Platform}{7}{subsection.6.4}\protected@file@percent }
\newlabel{sec:test-platform}{{\mbox {VI-D}}{7}{Testing Platform}{subsection.6.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {\mbox {VI-E}}Testing Process}{7}{subsection.6.5}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {VII}Analysis and Results}{7}{section.7}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {9}{\ignorespaces Number of Nodes and Number of Exploits (Averaged) vs. Runtime (ms)}}{8}{figure.9}\protected@file@percent }
\newlabel{fig:nodes-exp}{{9}{8}{Number of Nodes and Number of Exploits (Averaged) vs. Runtime (ms)}{figure.9}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {10}{\ignorespaces Applicability of Exploits (\%) and Database Load (\%) (Averaged) vs. Runtime (ms)}}{8}{figure.10}\protected@file@percent }
\newlabel{fig:appl-load}{{10}{8}{Applicability of Exploits (\%) and Database Load (\%) (Averaged) vs. Runtime (ms)}{figure.10}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {11}{\ignorespaces Minimum, Maximum, and Mean Speedup of MPI Tasking Across All Problem Sizes}}{9}{figure.11}\protected@file@percent }
\newlabel{fig:overall-speedup}{{11}{9}{Minimum, Maximum, and Mean Speedup of MPI Tasking Across All Problem Sizes}{figure.11}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {12}{\ignorespaces Minimum, Maximum, and Mean Efficiency of MPI Tasking Across All Problem Sizes}}{9}{figure.12}\protected@file@percent }
\newlabel{fig:overall-efficiency}{{12}{9}{Minimum, Maximum, and Mean Efficiency of MPI Tasking Across All Problem Sizes}{figure.12}{}}
\@writefile{toc}{\contentsline {section}{\numberline {VIII}Conclusion and Future Work}{9}{section.8}\protected@file@percent }
\newlabel{sec:FW}{{VIII}{9}{Conclusion and Future Work}{section.8}{}}
\citation{Amdahl}
\citation{Gust}
\citation{sun}
\bibdata{Bibliography}
\bibcite{9678822}{1}
\bibcite{7993827}{2}
\bibcite{8652334}{3}
\bibcite{baloyi_guidelines_2019}{4}
\bibcite{allman_complying_2006}{5}
\bibcite{j_hale_compliance_nodate}{6}
\@writefile{lof}{\contentsline {figure}{\numberline {13}{\ignorespaces Mean Speedup and Efficiency for the Exploit Parameter Across the Number of Compute Nodes}}{10}{figure.13}\protected@file@percent }
\newlabel{fig:param-exploit}{{13}{10}{Mean Speedup and Efficiency for the Exploit Parameter Across the Number of Compute Nodes}{figure.13}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {14}{\ignorespaces Mean Speedup and Efficiency for the Applicability of Exploit Parameter Across the Number of Compute Nodes}}{10}{figure.14}\protected@file@percent }
\newlabel{fig:param-appl}{{14}{10}{Mean Speedup and Efficiency for the Applicability of Exploit Parameter Across the Number of Compute Nodes}{figure.14}{}}
\@writefile{toc}{\contentsline {section}{References}{10}{section*.1}\protected@file@percent }
\bibcite{ou_scalable_2006}{7}
\bibcite{CPSIOT}{8}
\bibcite{ming_jo}{9}
\bibcite{cook_rage_2018}{10}
\bibcite{pacheco_introduction_2011}{11}
\bibcite{ainsworth_graph_2016}{12}
\bibcite{yao_efficient_2018}{13}
\bibcite{zhang_boosting_2017}{14}
\bibcite{dai_fpgp_2016}{15}
\bibcite{arifuzzaman_fast_2015}{16}
\bibcite{yu_construction_2018}{17}
\bibcite{liakos_memory-optimized_2016}{18}
\bibcite{balaji_graph_2016}{19}
\bibcite{noauthor_parmetis_nodate}{20}
\bibcite{noauthor_boost_nodate}{21}
\bibcite{cook_scalable_2016}{22}
\bibcite{li_concurrency_2019}{23}
\bibcite{9150145}{24}
\bibcite{7087377}{25}
\bibcite{10124989}{26}
\bibcite{li_combining_2019}{27}
\bibcite{Slurm}{28}
\bibcite{Amdahl}{29}
\bibcite{Gust}{30}
\bibcite{sun}{31}
\bibstyle{ieeetr}
\@writefile{toc}{\contentsline {section}{Biographies}{11}{IEEEbiography.0}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{Noah L. Schrick}{11}{IEEEbiography.1}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{Peter J. Hawrylak}{11}{IEEEbiography.2}\protected@file@percent }
\gdef \@abspage@last{11}

View File

@ -0,0 +1,167 @@
\begin{thebibliography}{10}
\bibitem{9678822}
N.~Dakhno, O.~Leshchenko, Y.~Kravchenko, A.~Dudnik, O.~Trush, and
V.~Khankishiev, ``Dynamic model of the spread of viruses in a computer
network using differential equations,'' in {\em 2021 IEEE 3rd International
Conference on Advanced Trends in Information Theory (ATIT)}, pp.~111--115,
2021.
\bibitem{7993827}
M.~Kwon, J.~Kwon, B.~Park, and H.~Park, ``An architecture of iptv networks
based on network coding,'' in {\em 2017 Ninth International Conference on
Ubiquitous and Future Networks (ICUFN)}, pp.~462--464, 2017.
\bibitem{8652334}
X.~Bai, M.~Liang, and S.~Zhu, ``A new routing scheme for large-scale computer
network,'' in {\em 2018 14th IEEE International Conference on Signal
Processing (ICSP)}, pp.~1019--1023, 2018.
\bibitem{baloyi_guidelines_2019}
N.~Baloyi and P.~Kotzé, ``Guidelines for {Data} {Privacy} {Compliance}: {A}
{Focus} on {Cyberphysical} {Systems} and {Internet} of {Things},'' in {\em
{SAICSIT} '19: {Proceedings} of the {South} {African} {Institute} of
{Computer} {Scientists} and {Information} {Technologists} 2019}, (Skukuza
South Africa), Association for Computing Machinery, 2019.
\bibitem{allman_complying_2006}
E.~Allman, ``Complying with {Compliance}: {Blowing} it off is not an option.,''
{\em ACM Queue}, vol.~4, no.~7, 2006.
\bibitem{j_hale_compliance_nodate}
{J. Hale}, P.~Hawrylak, and M.~Papa, ``Compliance {Method} for a
{Cyber}-{Physical} {System}.''
\newblock U.S. Patent Number 9,471,789, Oct. 18, 2016.
\bibitem{ou_scalable_2006}
X.~Ou, W.~F. Boyer, and M.~A. Mcqueen, ``A {Scalable} {Approach} to {Attack}
{Graph} {Generation},'' {\em CCS '06: Proceedings of the 13th ACM conference
on Computer and communications security}, pp.~336--345, 2006.
\bibitem{CPSIOT}
A.~T. Al~Ghazo, M.~Ibrahim, H.~Ren, and R.~Kumar, ``A2g2v: Automated attack
graph generator and visualizer,'' in {\em Proceedings of the 1st ACM MobiHoc
Workshop on Mobile IoT Sensing, Security, and Privacy}, Mobile IoT SSP'18,
(New York, NY, USA), Association for Computing Machinery, 2018.
\bibitem{ming_jo}
M.~Li, P.~Hawrylak, and J.~Hale, ``Strategies for practical hybrid attack graph
generation and analysis,'' {\em Digital Threats}, oct 2021.
\bibitem{cook_rage_2018}
K.~Cook, ``{RAGE}: {The} {Rage} {Attack} {Graph} {Engine},'' Master's thesis,
The {University} of {Tulsa}, 2018.
\bibitem{pacheco_introduction_2011}
P.~Pacheco, {\em An {Introduction} to {Parallel} {Programming}}.
\newblock Morgan Kaufmann, print~ed., 2011.
\bibitem{ainsworth_graph_2016}
S.~Ainsworth and T.~M. Jones, ``Graph prefetching using data structure
knowledge,'' {\em Proceedings of the International Conference on
Supercomputing}, vol.~01-03-June, 2016.
\bibitem{yao_efficient_2018}
P.~Yao, L.~Zheng, X.~Liao, H.~Jin, and B.~He, ``An efficient graph accelerator
with parallel data conflict management,'' {\em Parallel Architectures and
Compilation Techniques - Conference Proceedings, PACT}, 2018.
\bibitem{zhang_boosting_2017}
J.~Zhang, S.~Khoram, and J.~Li, ``Boosting the performance of {FPGA}-based
graph processor using hybrid memory cube: {A} case for breadth first
search,'' {\em FPGA 2017 - Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays}, pp.~207--216, 2017.
\bibitem{dai_fpgp_2016}
G.~Dai, Y.~Chi, Y.~Wang, and H.~Yang, ``{FPGP}: {Graph} processing framework on
{FPGA}: {A} case study of breadth-first search,'' {\em FPGA 2016 -
Proceedings of the 2016 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays}, pp.~105--110, 2016.
\bibitem{arifuzzaman_fast_2015}
S.~Arifuzzaman and M.~Khan, ``Fast parallel conversion of edge list to
adjacency list for large-scale graphs,'' in {\em {HPC} '15: {Proceedings} of
the {Symposium} on {High} {Performance} {Computing}}, pp.~17--24, Apr. 2015.
\bibitem{yu_construction_2018}
X.~Yu, W.~Chen, J.~Miao, J.~Chen, H.~Mao, Q.~Luo, and L.~Gu, ``The
{Construction} of {Large} {Graph} {Data} {Structures} in a {Scalable}
{Distributed} {Message} {System},'' in {\em {HPCCT} 2018: {Proceedings} of
the 2018 2nd {High} {Performance} {Computing} and {Cluster} {Technologies}
{Conference}}, pp.~6--10, June 2018.
\bibitem{liakos_memory-optimized_2016}
P.~Liakos, K.~Papakonstantinopoulou, and A.~Delis, ``Memory-{Optimized}
{Distributed} {Graph} {Processing} through {Novel} {Compression}
{Techniques},'' in {\em {CIKM} '16: {Proceedings} of the 25th {ACM}
{International} {Conference} on {Information} and {Knowledge} {Management}},
pp.~2317--2322, Oct. 2016.
\bibitem{balaji_graph_2016}
J.~Balaji and R.~Sunderraman, ``Graph {Topology} {Abstraction} for
{Distributed} {Path} {Queries},'' in {\em {HPGP} '16: {Proceedings} of the
{ACM} {Workshop} on {High} {Performance} {Graph} {Processing}}, pp.~27--34,
May 2016.
\bibitem{noauthor_parmetis_nodate}
K.~Lab, ``Parmetis - parallel graph partitioning and fill-reducing matrix
ordering.''
\newblock http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview.
\bibitem{noauthor_boost_nodate}
J.~Siek, L.-Q. Lee, and A.~Lumsdaine, ``The boost graph library, vers.
1.75.0.''
\newblock
https://www.boost.org/doc/libs/1$\_$75$\_$0/libs/graph/doc/index.html.
\bibitem{cook_scalable_2016}
K.~Cook, T.~Shaw, J.~Hale, and P.~Hawrylak, ``Scalable attack graph
generation,'' {\em Proceedings of the 11th Annual Cyber and Information
Security Research Conference, CISRC 2016}, 2016.
\bibitem{li_concurrency_2019}
M.~Li, P.~Hawrylak, and J.~Hale, ``Concurrency {Strategies} for {Attack}
{Graph} {Generation},'' {\em Proceedings - 2019 2nd International Conference
on Data Intelligence and Security, ICDIS 2019}, pp.~174--179, 2019.
\bibitem{9150145}
M.~Li, P.~J. Hawrylak, and J.~Hale, ``Implementing an attack graph generator in
cuda,'' in {\em 2020 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW)}, pp.~730--738, 2020.
\bibitem{7087377}
K.~Kaynar and F.~Sivrikaya, ``Distributed attack graph generation,'' {\em IEEE
Transactions on Dependable and Secure Computing}, vol.~13, no.~5,
pp.~519--532, 2016.
\bibitem{10124989}
N.~L. Schrick and P.~J. Hawrylak, ``State space explosion mitigation for
large-scale attack and compliance graphs using synchronous exploit firing,''
{\em IEEE Open Journal of the Computer Society}, vol.~4, pp.~147--157, 2023.
\bibitem{li_combining_2019}
M.~Li, P.~Hawrylak, and J.~Hale, ``Combining {OpenCL} and {MPI} to support
heterogeneous computing on a cluster,'' {\em ACM International Conference
Proceeding Series}, 2019.
\bibitem{Slurm}
SchedMD, ``Slurm {Workload} {Manager}.''
https://slurm.schedmd.com/overview.html, Apr. 2023.
\newblock Version 23.02.
\bibitem{Amdahl}
G.~M. Amdahl, ``Validity of the single processor approach to achieving large
scale computing capabilities,'' in {\em Proceedings of the April 18-20, 1967,
Spring Joint Computer Conference}, AFIPS '67 (Spring), (New York, NY, USA),
p.~483485, Association for Computing Machinery, 1967.
\bibitem{Gust}
J.~L. Gustafson, ``Reevaluating amdahl's law,'' {\em Commun. ACM}, vol.~31,
p.~532533, may 1988.
\bibitem{sun}
X.-H. Sun and L.~M. Ni, ``Another view on parallel speedup,'' in {\em
Proceedings of the 1990 ACM/IEEE conference on Supercomputing}, pp.~324--333,
1990.
\end{thebibliography}

View File

@ -0,0 +1,46 @@
This is BibTeX, Version 0.99d (TeX Live 2023/Arch Linux)
Capacity: max_strings=200000, hash_size=200000, hash_prime=170003
The top-level auxiliary file: Schrick-Noah_MPI-Tasking.aux
The style file: ieeetr.bst
Database file #1: Bibliography.bib
You've used 31 entries,
1876 wiz_defined-function locations,
645 strings with 9717 characters,
and the built_in function-call counts, 8129 in all, are:
= -- 783
> -- 310
< -- 0
+ -- 116
- -- 85
* -- 528
:= -- 1109
add.period$ -- 33
call.type$ -- 31
change.case$ -- 31
chr.to.int$ -- 0
cite$ -- 31
duplicate$ -- 454
empty$ -- 819
format.name$ -- 85
if$ -- 2018
int.to.chr$ -- 0
int.to.str$ -- 31
missing$ -- 27
newline$ -- 101
num.names$ -- 31
pop$ -- 151
preamble$ -- 1
purify$ -- 0
quote$ -- 0
skip$ -- 305
stack$ -- 0
substring$ -- 479
swap$ -- 178
text.length$ -- 0
text.prefix$ -- 0
top$ -- 0
type$ -- 0
warning$ -- 0
while$ -- 72
width$ -- 33
write$ -- 287

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,27 @@
\BOOKMARK [1][-]{section.1}{\376\377\000I\000n\000t\000r\000o\000d\000u\000c\000t\000i\000o\000n}{}% 1
\BOOKMARK [1][-]{section.2}{\376\377\000R\000e\000l\000a\000t\000e\000d\000\040\000W\000o\000r\000k\000s}{}% 2
\BOOKMARK [1][-]{section.3}{\376\377\000N\000e\000c\000e\000s\000s\000a\000r\000y\000\040\000C\000o\000m\000p\000o\000n\000e\000n\000t\000s}{}% 3
\BOOKMARK [2][-]{subsection.3.1}{\376\377\000S\000e\000r\000i\000a\000l\000i\000z\000a\000t\000i\000o\000n}{section.3}% 4
\BOOKMARK [1][-]{section.4}{\376\377\000I\000m\000p\000l\000e\000m\000e\000n\000t\000a\000t\000i\000o\000n\000\040\000o\000f\000\040\000t\000h\000e\000\040\000T\000a\000s\000k\000i\000n\000g\000\040\000A\000p\000p\000r\000o\000a\000c\000h}{}% 5
\BOOKMARK [2][-]{subsection.4.1}{\376\377\000A\000l\000g\000o\000r\000i\000t\000h\000m\000\040\000D\000e\000s\000i\000g\000n}{section.4}% 6
\BOOKMARK [2][-]{subsection.4.2}{\376\377\000C\000o\000m\000m\000u\000n\000i\000c\000a\000t\000i\000o\000n\000\040\000S\000t\000r\000u\000c\000t\000u\000r\000e}{section.4}% 7
\BOOKMARK [2][-]{subsection.4.3}{\376\377\000T\000a\000s\000k\000\040\000B\000r\000e\000a\000k\000d\000o\000w\000n}{section.4}% 8
\BOOKMARK [3][-]{subsubsection.4.3.1}{\376\377\000T\000a\000s\000k\000\040\0000}{subsection.4.3}% 9
\BOOKMARK [3][-]{subsubsection.4.3.2}{\376\377\000T\000a\000s\000k\000\040\0001}{subsection.4.3}% 10
\BOOKMARK [3][-]{subsubsection.4.3.3}{\376\377\000T\000a\000s\000k\000\040\0002}{subsection.4.3}% 11
\BOOKMARK [3][-]{subsubsection.4.3.4}{\376\377\000T\000a\000s\000k\000\040\0003}{subsection.4.3}% 12
\BOOKMARK [3][-]{subsubsection.4.3.5}{\376\377\000T\000a\000s\000k\000\040\0004\000\040\000a\000n\000d\000\040\000T\000a\000s\000k\000\040\0005}{subsection.4.3}% 13
\BOOKMARK [2][-]{subsection.4.4}{\376\377\000M\000P\000I\000\040\000T\000a\000g\000s}{section.4}% 14
\BOOKMARK [1][-]{section.5}{\376\377\000P\000e\000r\000f\000o\000r\000m\000a\000n\000c\000e\000\040\000E\000x\000p\000e\000c\000t\000a\000t\000i\000o\000n\000s\000\040\000a\000n\000d\000\040\000U\000s\000e\000\040\000C\000a\000s\000e\000s}{}% 15
\BOOKMARK [1][-]{section.6}{\376\377\000E\000x\000p\000e\000r\000i\000m\000e\000n\000t\000a\000l\000\040\000S\000e\000t\000u\000p}{}% 16
\BOOKMARK [2][-]{subsection.6.1}{\376\377\000N\000u\000m\000b\000e\000r\000\040\000o\000f\000\040\000E\000x\000p\000l\000o\000i\000t\000s}{section.6}% 17
\BOOKMARK [2][-]{subsection.6.2}{\376\377\000A\000p\000p\000l\000i\000c\000a\000b\000i\000l\000i\000t\000y\000\040\000o\000f\000\040\000E\000x\000p\000l\000o\000i\000t\000s}{section.6}% 18
\BOOKMARK [2][-]{subsection.6.3}{\376\377\000D\000a\000t\000a\000b\000a\000s\000e\000\040\000L\000o\000a\000d}{section.6}% 19
\BOOKMARK [2][-]{subsection.6.4}{\376\377\000T\000e\000s\000t\000i\000n\000g\000\040\000P\000l\000a\000t\000f\000o\000r\000m}{section.6}% 20
\BOOKMARK [2][-]{subsection.6.5}{\376\377\000T\000e\000s\000t\000i\000n\000g\000\040\000P\000r\000o\000c\000e\000s\000s}{section.6}% 21
\BOOKMARK [1][-]{section.7}{\376\377\000A\000n\000a\000l\000y\000s\000i\000s\000\040\000a\000n\000d\000\040\000R\000e\000s\000u\000l\000t\000s}{}% 22
\BOOKMARK [1][-]{section.8}{\376\377\000C\000o\000n\000c\000l\000u\000s\000i\000o\000n\000\040\000a\000n\000d\000\040\000F\000u\000t\000u\000r\000e\000\040\000W\000o\000r\000k}{}% 23
\BOOKMARK [1][-]{section*.1}{\376\377\000R\000e\000f\000e\000r\000e\000n\000c\000e\000s}{}% 24
\BOOKMARK [1][-]{IEEEbiography.0}{\376\377\000B\000i\000o\000g\000r\000a\000p\000h\000i\000e\000s}{}% 25
\BOOKMARK [2][-]{IEEEbiography.1}{\376\377\000N\000o\000a\000h\000\040\000L\000.\000\040\000S\000c\000h\000r\000i\000c\000k}{IEEEbiography.0}% 26
\BOOKMARK [2][-]{IEEEbiography.2}{\376\377\000P\000e\000t\000e\000r\000\040\000J\000.\000\040\000H\000a\000w\000r\000y\000l\000a\000k}{IEEEbiography.0}% 27

Binary file not shown.

View File

@ -0,0 +1,392 @@
\documentclass[lettersize,journal]{IEEEtran}
\usepackage{cite}
\usepackage{amsmath,amssymb,amsfonts}
\usepackage{algorithmic}
\usepackage{algorithm}
\usepackage[caption=false,font=normalsize,labelfont=sf,textfont=sf]{subfig}
\usepackage{array}
\usepackage{stfloats}
\usepackage{url}
\usepackage{verbatim}
\usepackage{graphicx}
\graphicspath{ {./images/} }
\usepackage{babel} % Bibliography
\usepackage{textcomp}
\usepackage[utf8]{inputenc}
\usepackage{float}
\usepackage{xcolor}
\usepackage{orcidlink}
\def\BibTeX{{\rm B\kern-.05em{\sc i\kern-.025em b}\kern-.08em
T\kern-.1667em\lower.7ex\hbox{E}\kern-.125emX}}
\hyphenation{op-tical net-works semi-conduc-tor IEEE-Xplore}
\begin{document}
\title{Parallelization of Large-Scale Attack and Compliance Graph Generation Using Message-Passing Interface
}
\author{NOAH L. SCHRICK\,\orcidlink{0000-0003-0875-8927}~\IEEEmembership{Member,~IEEE,}, AND PETER J. HAWRYLAK\,\orcidlink{0000-0003-3268-7452},~\IEEEmembership{Senior Member,~IEEE,}
%
\thanks{The authors are affiliated with the Tandy School of Computer Science, Department of Computer Science, University of Tulsa, Tulsa,
OK 74104 USA (e-mail: noah-schrick@utulsa.edu, peter-hawrylak@utulsa.edu).}}%
\maketitle
\begin{abstract}
Large-scale attack and compliance graphs can be used for detecting, preventing, and correcting cybersecurity or compliance violations with a system or set of systems. However, as modern-day networks expand in size, and as the number of possible exploits and regulation mandates increase, large-scale attack and compliance graphs can seldom be feasibly generated through serial means. This work presents a parallelized generation process that leverages Message-Passing Interface (MPI) for distributed computing. A task parallelism approach was implemented that includes compatibility for a hybrid MPI-OpenMPI graph generation. This approach was deployed on a High-Performance Computing (HPC) system where a large amount of performance data was collected to capture and conduct a comprehensive analysis on the approach. This work discusses the need for this approach, describes the design process and experimental setup, and illustrates the success that was obtained through speedup and efficiency metrics.
\end{abstract}
\begin{IEEEkeywords}
Attack Graph; Compliance Graph; MPI; High-Performance Computing; Cybersecurity; Compliance and Regulation; Speedup; Parallelism;
\end{IEEEkeywords}
\section{Introduction} \label{sec:Intro}
As the size of computer networks continues to grow, cybersecurity analysts are tasked to mitigate risk with increasing difficulty. The authors of \cite{9678822}, \cite{7993827}, and \cite{8652334} discuss how the rapidly expanding network sizes bring about drastic changes along with the requirement to shift and refocus to accommodate the expansion. This includes presenting novel architectures to support the ever-growing IPTV networks, examinations of computer viruses through epidemiology modeling, and evaluations of new routing schemes. In recent years, a greater usage of cyber-physical systems and a growing adoption of the Internet of Things (IoT) also contributes to an increased need for risk mitigation across varying types of networks, as discussed by the authors of \cite{baloyi_guidelines_2019}, \cite{allman_complying_2006}, and \cite{j_hale_compliance_nodate}. One approach for analyzing the large number of hosts (assets) and growing lists of exploits is to automate the generation of attack or compliance graphs for later use. Attack and compliance graphs are directed acyclic graphs (DAGs) that typically represent one or many systems as nodes in a graph, and any changes that could be made to them as edges. The automation of these graphs has been used and presented by authors such as \cite{ou_scalable_2006}, \cite{CPSIOT}, and \cite{ming_jo}. The graph generators will take system information and exploits to check for as input, and will exhaustively draw all possible ways that the systems may be at risk of a cybersecurity attack or at risk of violating a compliance regulation or mandate. If a system is able to be modified through a setting change (regardless of intent), have its compliance standing altered, or have a policy updated, an edge is drawn from that node to a new node with the changed system properties. This process is repeated until all possible alterations are identified and represented in the resulting attack or compliance graph.
Due to the expansion in network size, and with the inclusion of IoT and cyber-physical devices, the generation of attack and compliance graph quickly becomes difficult with the large number of assets needed to be processed. In addition, the number of regulatory and compliance checks, the large number of exploit and vulnerability entries available, and any custom internal standard checks or zero-day scripting causes a state space explosion in the graph generation process. As a result, real-world graphs become infeasible to generate and process serially.
The attack and compliance graph generation is a viable process to parallelize and deploy on High-Performance Computing (HPC) environments, and related parallel and speedup works are discussed in Section \ref{sec:rel_works}. This work presents an extension to RAGE (RAGE Attack Graph Engine) \cite{cook_rage_2018} to function on distributed computing environments to take advantage of the increased computing power using message-passing. As mentioned by the author of \cite{pacheco_introduction_2011}, MPI is a widely used message-passing API, and one goal of this work was to utilize an API that was not only familiar and accessible, but versatile and powerful for parallelizing RAGE for distributed computing platforms. This work discusses a task parallelism approach for the generation process, and uses OpenMPI for the MPI implementation.
\section{Related Works} \label{sec:rel_works}
For architectural and hardware techniques for general graph generation improvement, the authors of \cite{ainsworth_graph_2016} discuss the high cache miss rate, and how general prefetching
does not increase the prediction rate due to nonsequential graph structures and data-dependent access patterns. However, the authors continue to discuss that generation algorithms are known in advance, so explicit tuning of the hardware prefetcher to follow the traversal order pattern can lead to better performance. The authors were able to achieve over 2x performance improvement of a breadth-first search approach with this method.
Another hardware approach is to make use of accelerators. The authors of \cite{yao_efficient_2018} present an approach for minimizing the slowdown caused by the underlying graph atomic functions. By using the atomic function patterns, the authors utilized pipeline stages where vertex updates can be processed in parallel dynamically.
Other works, such as those by the authors of \cite{zhang_boosting_2017} and \cite{dai_fpgp_2016}, leverage field-programmable gate arrays (FPGAs) for graph generation in the HPC space through various means. This includes reducing memory strain, storing repeatedly accessed lists, storing results, or other storage through the on-chip block RAM, or even leveraging Hybrid Memory Cubes for optimizing parallel access.
From a data structure standpoint, the authors of \cite{arifuzzaman_fast_2015} describe the infeasibility of adjacency matrices in large-scale graphs, and this work and other works such as those by the authors of \cite{yu_construction_2018} and \cite{liakos_memory-optimized_2016} discuss the appeal of distributing a graph representation across systems.
The author of \cite{liakos_memory-optimized_2016} discusses the usage of distributed adjacency lists for assigning vertices to workers.
The authors of \cite{liakos_memory-optimized_2016} and \cite{balaji_graph_2016} present other techniques for minimizing communication costs by achieving high compression ratios while maintaining a low compression cost.
The Boost Graph Library and the Parallel Boost Graph Library both provide appealing features for working with graphs, with the latter library notably having interoperability with MPI, Graphviz, and METIS \cite{noauthor_parmetis_nodate}, \cite{noauthor_boost_nodate}.
There have also been numerous approaches at generation improvement specific to attack graphs. As a means of improving scalability of attack graphs, the authors of \cite{ou_scalable_2006} present a new representation scheme. Traditional attack graphs encode the entire network at each state, but the representation presented by the authors uses logical statements to represent a portion of the network at each node. This is called a logical attack graph. This approach led to the reduction of the generation process to quadratic time and reduced the number of nodes in the resulting graph to $\mathcal{O}({n}^2)$. However, this approach does require more analysis for identifying attack vectors.
Another approach presented by the authors of \cite{cook_scalable_2016} represents a description of systems and their qualities and topologies as a state, with a queue of unexplored states.
This work was continued by the authors of \cite{li_concurrency_2019} by implementing a hash table among other features. Each of these works demonstrates an improvement in scalability through refining the desirable information output.
Another approach for generation improvement is through parallelization. The authors of \cite{li_concurrency_2019} leverage OpenMP to parallelize the exploration of a FIFO queue. This parallelization also includes the utilization of OpenMP's dynamic scheduling. In this approach, each thread receives a state to explore, where a critical section is employed to handle the atomic functions of merging new state information while avoiding collisions, race conditions, or stale data usage. The authors measured a 10x speedup over the serial algorithm.
The authors of \cite{9150145} present a parallel generation approach using CUDA, where speedup is obtained through a large number of CUDA cores.
For a distributed approach, the authors of \cite{7087377} present a technique for utilizing reachability hyper-graph partitioning and a virtual shared memory abstraction to prevent duplicate work by multiple nodes. This work had promising results in terms of speedup and in limiting the state-space explosion as the number of network hosts increases.
\section{Necessary Components}
\subsection{Serialization}
In order to distribute workloads across nodes in a distributed system, various
types of data will need to be sent and received. Support and mechanisms vary based
on the MPI implementation, but most fundamental data types such as integers, doubles,
characters, and Booleans are incorporated into the MPI implementation. While this does
simplify some of the messages that need to be sent and received in the MPI approaches of
attack and compliance graph generation, it does not cover the vast majority of them when using RAGE.
RAGE implements many custom classes and structs that are used throughout the generation process.
Qualities, topologies, network states, and exploits are a few such examples. Rather than breaking
each of these down into fundamental types manually, serialization functions are leveraged to handle
most of this. RAGE already incorporates Boost graph libraries for auxiliary support, so this work
extended this further to utilize the serialization libraries also provided by Boost. These
libraries also include support for serializing all STL classes, and many of the RAGE
classes have members that make use of the STL classes. One additional advantage of the Boost
library approach is that many of the RAGE classes are nested. For example, the NetworkState
class has a member vector of Quality classes, and the Quality class has a Keyvalue class as a member. When serializing the NetworkState class, Boost will
recursively serialize all members, including the custom class members, assuming they also have
serialization functions.
When using the serialization libraries, this work opted to use the intrusive route, where the
class instances are altered directly. This was preferable to the non-intrusive approach, since
the class instances were able to be altered with relative ease, and many of the class instances
did not expose enough information for the non-intrusive approach to be viable.
\section{Implementation of the Tasking Approach} \label{sec:Tasking-Approach}
The high-level overview of the attack and compliance graph generation process can be broken down into six main tasks.
These tasks are described in Figure \ref{fig:tasks}. Prior works such as that seen by the
authors of \cite{li_concurrency_2019}, \cite{9150145}, and \cite{7087377} work to parallelize the graph generation using
OpenMP, CUDA, and hyper-graph partitioning. This approach, however, utilizes Message Passing Interface (MPI)
to distribute the six identified tasks of RAGE to examine the effect on speedup, efficiency, and scalability for
attack and compliance graph generation.
\begin{figure}[htp]
\includegraphics[width=\linewidth]{"./images/schri1.png"}
\vspace{.2truein} \centerline{}
\caption{Overview of the Tasking Pipeline for the Attack and Compliance Graph Generation Process}
\label{fig:tasks}
\end{figure}
\subsection{Algorithm Design}
The design of the tasking approach is to leverage a pipeline structure with the six tasks and MPI nodes. After its completion, each stage of the pipeline will pass the necessary data to the next stage through various MPI messages, where the next stage's nodes will receive the data and execute their tasks. The pipeline is considered fully saturated when each task has a dedicated node solely for executing work for that task. When there are less nodes than tasks, some nodes will process multiple tasks. When there are more nodes than tasks, additional nodes will be assigned to Tasks 1 and 2. Timings were collected in the serial approach for various networks that displayed more time requirements for Tasks 1 and 2, with larger network sizes requiring vastly more time to be taken in Tasks 1 and 2. As a result, additional nodes are assigned to Tasks 1 and 2. Node allocation can be seen in Figure \ref{fig:node-alloc}; where ``world.size()" is an integer value representing the number of nodes used in the program, and ``num$\_$tasks" is an integer value representing the number of tasks used in the pipeline. By using a variable for the number of tasks, it allows for modular usage of the pipeline, where tasks can be added and removed without needing to change any allocation logic work; only communication between tasks may need to be modified, and the allocation can be adjusted relatively simply to include new tasks.
For determining which tasks should be handled by the root note, a few considerations were made, where minimizing communication cost and avoiding unnecessary complexity were the main two considerations. In the serial approach, the frontier queue was the primary data structure for the majority of the generation process. Rather than using a distributed queue or passing multiple sub-queues between nodes, the minimum cost option is to pass states individually. This approach also assists in reducing the complexity. Managing multiple frontier queues would require duplication checks, multiple nodes requesting data from and storing data into the database, and devising a strategy to maintain proper queue ordering, all of which would also increase the communication cost. As a result, the root node will be dedicated to Tasks 0 and 3.
\begin{figure}[htp]
\includegraphics[width=\linewidth]{"./images/schri2.png"}
\vspace{.2truein} \centerline{}
\caption{Node Allocation for each Task}
\label{fig:node-alloc}
\end{figure}
\subsection{Communication Structure}
The underlying communication structure for the tasking approach relies on a pseudo-ring structure. As seen in Figure \ref{fig:node-alloc}, nodes n$_2$, n$_3$, and n$_4$ are derived from the previous task's greatest node rank. To keep the development abstract, a custom send function checks the world size (``world.size()") before sending. If the rank of the node that would receive a message is greater than the world size and therefore does not exist, the rank would then be ``looped around" and corrected to fit within the world size constraints. After the rank correction, the MPI Send function was then invoked with the proper node rank.
\subsection{Task Breakdown}
\subsubsection{Task 0}
Task 0 is performed by the root node, and is a conditional task; it is not guaranteed to be executed at each pipeline iteration. Task 0 is only executed when the frontier is empty, but the database still holds unexplored states. This occurs when there are memory constraints, and database storage is performed during execution to offload the demand. Additional detail is discussed in Section \ref{sec:db-stor}. After the completion of Task 0, the frontier has a state popped, and the root node sends the state to n$_1$. If the frontier is empty, the root node sends the finalize signal to all nodes.
\subsubsection{Task 1}
Task 1 begins by distributing the workload between nodes based on the local task communicator rank. Rather than splitting the exploit list at the root node and sending sub-lists to each node allocated to Task 1, each node checks its local communicator rank and performs a modulo operation with the number of nodes allocated to determine whether it should proceed with the current iteration of the exploit loop. Since the exploit list is static, each node has the exploit list initialized prior to the generation process, and communication cost can be avoided from sending sub-lists to each node. Each node in Task 1 works to compile a reduced exploit list that is applicable to the current network state. A breakdown of the Task 1 workload distribution can be seen in Figure \ref{fig:Task1-Data-Dist}.
\begin{figure}[htp]
\includegraphics[width=\linewidth]{"./images/schri3.png"}
\vspace{.2truein} \centerline{}
\caption{Data Distribution of Task One}
\label{fig:Task1-Data-Dist}
\end{figure}
Once the computation work of Task 1 is completed, each node must send their compiled applicable exploit list to Task 2. Rather than merging all lists and splitting them back out in Task 2, each node in Task 1 will send an applicable exploit list to at most one node allocated to Task 2. Based on the allocation of nodes seen in Figure \ref{fig:node-alloc}, there are 2 potential cases: the number of nodes allocated to Task 1 is equal to the number of nodes allocated to Task 2, or the number of nodes allocated to Task 1 is one greater than the number of nodes allocated to Task 2. For the first case, each node in Task 1 sends the applicable exploit list to its global rank+n$_1$. This case can be seen in Figure \ref{fig:Task1-Case1}. For the second case, since there are more nodes allocated to Task 1 than Task 2, node n$_1$ scatters its partial applicable exploit list in the local Task 1 communicator, and all other Task 1 nodes follow the same pattern seen in the first case. This second case can be seen in Figure \ref{fig:Task1-Case2}.
\begin{figure}[htp]
\includegraphics[width=\linewidth]{"./images/schri4.png"}
\vspace{.2truein} \centerline{}
\caption{Communication From Task 1 to Task 2 when the Number of Nodes Allocated is Equal}
\label{fig:Task1-Case1}
\end{figure}
\begin{figure}[htp]
\includegraphics[width=\linewidth]{"./images/schri5.png"}
\vspace{.2truein} \centerline{}
\caption[Task 1 to Task 2 Communication, Case 2]{Communication From Task 1 to Task 2 when Task 1 Has More Nodes Allocated}
\label{fig:Task1-Case2}
\end{figure}
\subsubsection{Task 2}
Each node in Task 2 iterates through the received partial applicable exploit list and creates new states with edges to the current state. Part of Task 2's workload is to handle a feature called synchronous firing \cite{10124989}. This feature allows for a grouping of assets. Rather than an exploit firing separately across all assets, synchronous firing allows for an exploit to fire one time, simultaneously across a group of assets. Syncing multiple exploits that could be distributed across multiple nodes leads to additional overhead and complexity. To prevent these difficulties, each node checks its partial applicable exploit list for exploits that are part of a group, removes these exploits from its list, and sends the exploits belonging to a group to the Task 2 local communicator root. Since the Task 2 local root now contains all group exploits, it can execute the synchronous firing work without additional communication or synchronization between other MPI nodes in the Task 2 stage. Other than the additional setup steps required for synchronous firing for the local root, all work performed during this task by all MPI nodes is that seen from the synchronous firing figure (Figure \ref{fig:sync-fire}).
\begin{figure}[htp]
\includegraphics[width=0.8\linewidth]{"./images/schri6.png"}
\vspace{.2truein} \centerline{}
\caption{Program Flow of Synchronous Firing in Task 2}
\label{fig:sync-fire}
\end{figure}
\subsubsection{Task 3}
Task 3 is performed only by the root node, and no division of work is necessary. The root node will continuously check for new states until the Task 2 finalize signal is detected. This task consists of setting the new state's ID, adding it to the frontier, adding its information to the instance, and inserting information into the hash map. When the root node has processed all states and has received the Task 2 finalize signal, it will complete Task 3 by sending the instance and/or frontier to Task 4 and/or 5, respectively if applicable, then proceed to Task 0.
\subsubsection{Task 4 and Task 5} \label{sec:T4T5}
Intermediate database operations, though not frequent and may never occur for small graphs, are lengthy and time-consuming when they do occur. As discussed in Section \ref{sec:db-stor}, the two main memory consumers are the frontier and the instance, both of which are contained by the root node's memory. Since the database storage requests are blocking, the pipeline would halt for a lengthy period of time while waiting for the root node to finish potentially two large storages. Tasks 4 and 5 work to alleviate the stall by executing independently of the regular pipeline execution flow. Since Tasks 4 and 5 do not send any data, no other tasks must wait for these tasks to complete. The root node can then asynchronously send the frontier and instance to the appropriate nodes as needed, clear its memory, and continue execution without delay. After initial testing, it was determined that the communication cost of the asynchronous sending of data for Tasks 4 and 5 is less than the time requirement of a database storage operation if performed by the root node.
\subsection{MPI Tags} \label{sec:tasking-tag}
To ensure that the intended message is received by each node, the MPI message envelopes have their tag fields specified. When a node sends a message, it specifies a tag that corresponds with the data and intent for which it is sent. The tag values were arbitrarily chosen, and tags can be added to the existing list or removed as desired. When receiving a message, a node can specify to only look for messages that have an envelope with a matching tag field. Not only do tags ensure that nodes are receiving the correct messages, they also reduce complexity for program design. Table \ref{table:tasking-tag} displays the list of tags used for the MPI Tasking approach.
\begin{table}[]
\centering
\begin{tabular}{|c|c|}
\hline
\textbf{Tag} & \textbf{Description} \\ \hline
2 & Task 2 Finalize Signal \\ \hline
3 & Fact for Hash Map Update \\ \hline
4 & NetworkState for Hash Map Update \\ \hline
5 & NetworkState to be Added to the Frontier \\ \hline
6 & Current NetworkState Reference for Edge Creation \\ \hline
7 & Factbases for Task 4 \\ \hline
8 & Edges for Task 4 \\ \hline
9 & Group Exploit Vectors for Local Root in Task 2 \\ \hline
10 & Exploit Reference for Task 3 Work \\ \hline
11 & AssetGroup Reference for Task 3 Work \\ \hline
14 & Continue Signal \\ \hline
15 & Finalize Signal \\ \hline
20 & Current NetworkState Reference for Task 1 \\ \hline
21 & Applicable Exploit Vector Scatter for Task 1 Case 2 \\ \hline
30 & Applicable Exploit Vector Send to Task 2 \\ \hline
40 & NetworkState Send to Task 2 \\ \hline
50 & NetworkState to Store in Task 5 \\ \hline
\end{tabular}
\caption{MPI Tags for the MPI Tasking Approach}
\label{table:tasking-tag}
\end{table}
\section{Performance Expectations and Use Cases} \label{sec:Task-perf-expec}
Due to the amount of communication between nodes to distribute the necessary data through all stages of the tasking pipeline, this approach is not expected to outperform the serial approach in all cases. This tasking approach was specifically designed to reduce the computation time when the generation of each individual state increases in time. This approach does not offer any guarantees of processing through the frontier at an increased rate; it's main objective is to distribute the workload of individual state generation. As discussed in Section \ref{sec:Intro}, the amount of entries in the National Vulnerability database and any custom vulnerability testing to ensure adequate examination of all assets in the network sums to large number of exploits in the exploit list. Likewise for compliance graphs and compliance examinations, Section \ref{sec:Intro} also discussed that the number of compliance checks for SOX, HIPAA, GDPR, PCI DSS, and/or any other regulatory compliance also sums to a large number of compliance checks in the exploit list. Since the generation of each state is largely dependent on the number of exploits present in the exploit list, this approach is best-suited for when the exploit list grows in size. As will be later discussed, it is also hypothesized that this approach is well-suited when many database operations occur.
\section{Experimental Setup}
In order to capture a comprehensive image of the tasking approach's impact on performance, a number of parameters were altered and the generation properties were examined. Table \ref{table:tasking-gen-perf} presents each task and the parameters that affect the performance of each task. Generating larger graphs would increase the runtime, but does not necessarily stress each task or provide a consistent, reliable way to draw conclusions regarding the tasking approach. In order to ensure consistency across the experimental testing and minimize the possibility of introducing bias, all tests generated the exact same graph. All tests would generate the same graph with identical numbers of states, identical numbers of edges, identical labeling, and identical inner workings and underlying properties. The following subsections describe the altered parameters, the manner in which they were altered, and how data integrity of the resulting graph was preserved. The parameter alteration process focused on avoiding artificial inflation of the performance metrics, and each subsection emphasizes the practicality of each altered parameter.
\begin{table}[]
\centering
\begin{tabular}{|c|c|c|}
\hline
\textbf{Task}
& \textbf{Shortened Description}
& \textbf{\begin{tabular}[c]{@{}c@{}}Performance\\ Affected By\end{tabular}}
\\ \hline
0 & Retrieve Next State & Database Load \\ \hline
1 & \begin{tabular}[c]{@{}c@{}}Compile List of \\ Applicable Exploits\end{tabular} & Number of Exploits \\ \hline
2 & \begin{tabular}[c]{@{}c@{}}Loop through List of\\ Applicable Exploits\end{tabular} & \begin{tabular}[c]{@{}c@{}}Number of\\ Applicable Exploits\end{tabular} \\ \hline
3 & Bookkeeping & Number of States \\ \hline
4 & \begin{tabular}[c]{@{}c@{}}C/R and/or memory\\ clear of graph instance\end{tabular} & Database Load \\ \hline
5 & \begin{tabular}[c]{@{}c@{}}C/R and/or memory\\ clear of frontier\end{tabular} & Database Load \\ \hline
\end{tabular}
\caption{Task Descriptions and Performance Notes}
\label{table:tasking-gen-perf}
\end{table}
\subsection{Number of Exploits}
Task 1 loops through the number of exploits and checks each exploit against the list of assets to see if an exploit is applicable at the current state. As the number of exploits grows, the time taken for Task 1 will increase accordingly. The exploit list used by Task 1 does not need to be applicable to the current asset or state, or even to any asset or any state. Regardless of if the exploit is applicable or not, Task 1 still loops through the entirety of the exploit list to check if any exploit may be applicable. Therefore, to prevent state-space explosion but still gather valid results, each exploit list in the tests contained a set of exploits that could be applicable, and all remaining exploits were not applicable. The not applicable exploits were created in a fashion similar to that seen in Figure \ref{fig:NA-exp}. By creating a multitude of not applicable exploits, the exploit list is able to be artificially increased, which ensures that the resulting graph maintains the same number of states, edges, and identical properties. For the experimental setup, the original exploit list begins with a size of 6, and artificially doubles in size until a final set of graphs is generated using an exploit size of 49,152 exploits. A Python script was used to generate the exploit lists.
\begin{figure}[htp]
\centering
\includegraphics[scale=0.5]{"./images/schri7.png"}
\vspace{.2truein} \centerline{}
\caption{Example of a Not Applicable Exploit for the MPI Tasking Testing}
\label{fig:NA-exp}
\end{figure}
\subsection{Applicability of Exploits}
When the number of exploits is artificially increased, the runtime for the overall generation process also increases. However, solely increasing the number of exploits adds a strain on only Task 1; Tasks 0, 2, 3, 4, and 5 are not adequately stress tested through the number of exploits alone. As a result, additional parameters will need to be altered to capture a thorough image of the tasking performance.
One parameter that can be carefully altered without affecting the resulting graph is the applicability of exploits. As the number of exploits applicable to any state grows, the runtime for Task 2 similarly increases since it must process all applicable exploits and generate new states and edges from the current state. In order for an exploit to be applicable and to not change the resulting graph, the exploit needs to have a precondition that is universally true, with a postcondition that has no effect. For the automobile example, an alteration to the ``not applicable" exploit seen in Figure \ref{fig:NA-exp} can be performed. The new, artificially applicable exploit can be seen in Figure \ref{fig:Appl-exp}. These artificial exploits will be applicable for any asset at any state in the test network, since no car in this example will ever posses a quality that allows it to fly. Likewise, though the exploit will be processed, the postcondition updates the car quality to match the quality it already contains (``flying$\_$car=false" is instantiated in the input network model). The update keyword in the postcondition still triggers the update function, even if no change is actually made. By updating the car quality in this manner, it is ensured that no change to the resulting graph is made, while still gathering accurate timing data and not skipping any functions called in Task 2.
In RAGE, when an applicable exploit is processed, a new state is always created. The new state is hashed, and its hash is compared to the known hashes. If the hash already exists, the state is discarded and program flow continues. If the hash had not been seen, then the state is added to the instance and frontier. Due to this behavior, it is ensured that the approach for the artificially applicable exploits can capture realistic performance data. In the case of the artificially applicable exploit, the new state is still created and hashed, timing data is captured, and the new state is then discarded along with its edges.
The applicability of exploits was tested by using percentages of overall exploits, excluding the 6 base exploits. The artificial exploits were generated with a Python script based on the example seen in Figure \ref{fig:Appl-exp}. As an illustration, in the case were there are 12 total exploits, the applicability of exploits tests the performance when a percentage of the total exploits were applicable, following the example shown below:
\begin{itemize}
\item{0\% (floor(0.00 * (12-6 base exploits)) = 0 exploits)}
\item{25\% (floor(0.25 * (12-6 base exploits)) = 1 exploit)}
\item{50\% (floor(0.50 * (12-6 base exploits)) = 3 exploits)}
\item{75\% (floor(0.75 * (12-6 base exploits)) = 4 exploits)}
\item{100\% (floor(1.00 * (12-6 base exploits)) = 6 exploits)}
\end{itemize}
\begin{figure}[htp]
\centering
\includegraphics[scale=0.5]{"./images/schri8.png"}
\vspace{.2truein} \centerline{}
\caption{Example of an Artificially Applicable Exploit for the MPI Tasking Testing}
\label{fig:Appl-exp}
\end{figure}
\subsection{Database Load} \label{sec:db-stor}
The database load parameter is a parameter passed to RAGE to determine when to offload data. The generation of large-scale attack and compliance graphs often faces challenges with scalability and state space explosion. For these large-scale graphs, as the generation process progresses, the resulting graph and the queue of unexplored states begins to consume too much memory for most systems, and the process either needs to offload the data or run the risk of its process being killed for constraints on memory consumption. Works by the authors of \cite{cook_rage_2018}, \cite{li_concurrency_2019}, and \cite{li_combining_2019} strive for maximum performance of the generation process, which involves making full use of system memory. Since network operations, database operations, and reading and writing from disks slows the generation, it is often preferred to store all data in memory. As a result, there is a balance between performance and system memory consumption.
RAGE has the option for automatically offloading to a PostgreSQL database based on its memory consumption. The database load parameter can either be a float between 0 and 1, or can be an integer greater than 1. If the parameter is a float, RAGE will automatically offload its graph instance or frontier if the memory consumed by either exceeds a percentage of total system memory corresponding to the float value. If the parameter is an integer greater than 1, RAGE wil automatically offload its graph instance or frontier if the number of items in either is greater than the parameter value.
Since the goal of the stress tests is to generate identical graphs for all tests while still stressing each task, the load parameter was carefully altered. The total number of states generated by RAGE is known in advance since the resulting graph has already been generated, and will be constant for all stress tests. For the automobile example being tested, the total number of states is 394. In order to test the database load, it is preferable to use an integer value for the load parameter rather than a float. By using an integer value, it is possible to specifically target how often the offloading process should occur. If a float value was used, additional work would be needed to give RAGE only a certain amount of system memory per test. Though possible, there is more simplicity with passing in static integer values since the graph is known in advance.
The database load parameter was changed based on percentage of the total resulting graph size, as follows:
\begin{itemize}
\item{0\% Load (Do not ever write to the database) - DBLoad = 395}
\item{25\% Load (Write to the database when 25\% of the total resulting graph size is in memory) - DBLoad = 296}
\item{50\% Load (Write to the database when 50\% of the total resulting graph size is in memory) - DBLoad = 197}
\item{75\% Load (Write to the database when 75\% of the total resulting graph size is in memory) - DBLoad = 79}
\item{100\% Load (Write to the database on every new state) - DBLoad = 1}
\end{itemize}
The database load parameter stresses Tasks 0, 4, and 5. Task 4 will be stress tested on all load parameters, except for when the load is 0\% (size 395), which serves as the control. Task 4 will experience the greatest workload when the load parameter is 100\% (size 1), since as soon as new states are discovered in previous tasks, Task 4 will begin. Task 0 and Task 5 will experience stress at the same intervals. When the queue of unexplored states increases to a size greater than the load parameter, Task 5 will empty the queue, and Task 0 will be forced to pull new states from the database.
\subsection{Testing Platform} \label{sec:test-platform}
All data was collected on a 13 node cluster, with 12 nodes serving as dedicated compute nodes, and 1 node serving as the login node. Each compute node has a configuration as follows:
\begin{itemize}
\item{OS: CentOS release 6.9}
\item{CPU: Two Intel Xeon E5-2620 v3}
\item{Two Intel Xeon Phi Co-Processors}
\item{One FPGA (Nallatech PCIE-385n A7 Altera Stratix V)}
\item{Memory: 64318MiB}
\end{itemize}
All nodes are connected with a 10Gbps Infiniband interconnect.
\subsection{Testing Process}
Each parameter discussed in this section was individually changed until all permutations of parameters were explored. In addition to changing the parameters, all tests were conducted on a varying number of nodes. All permutations of parameters were examined on 1 compute node (serially) through 12 compute nodes. A bash script for looping through parameters was created on the distributed computing testing platform, with jobs sent to Slurm Workload Manager \cite{Slurm}. When a job is completed with Slurm, the bash script would use grep on the output file to extract the necessary data, and add it to a CSV file that was used for the data analysis.
\section{Analysis and Results}
Due to a limited amount of compute time, only preliminary results were gathered, instead of deploying the entire testing benchmark suite. For the local University cluster, job allocations had a fixed amount of allowed runtime prior to job scheduler termination. Users were also permitted only a limited amount of concurrent job allocations. With a limited amount of concurrent jobs and a limited amount of job runtime, the full benchmark suite would need to be broken up into several sequences of jobs that would span across a great length of time, since the next jobs could only begin once the previous sequence ended.
The preliminary results gathered were intended to be the ``slowest" tests that would have the lowest speedup. The ``worst-case", minimum-bound data was collected to determine potential success of this approach. If the slowest tests still yielded promising speedups or efficiencies, then this approach would be viable and appealing for future, in-depth testing that could stress each component of the generation process.
Exploratory data analysis was performed on the resulting data using Python to ascertain data relationships. Due to the multivariate nature of the data, there is difficulty visualizing all four independent variables (parameters) and the outcome (runtime) simultaneously. Using pivot tables, Figures \ref{fig:nodes-exp} and \ref{fig:appl-load} show the runtime as they relate to the average of each individual parameter. These figures display the expected outcome: as the number of nodes increase, the runtime decreases, and as the number of exploits, applicability of exploits, and database load increases, the runtime likewise increases.
\begin{figure}
\centering
\includegraphics[width=\linewidth]{"./images/schri9.png"}
\includegraphics[width=\linewidth]{"./images/schri10.png"}
\caption{Number of Nodes and Number of Exploits (Averaged) vs. Runtime (ms)}
\label{fig:nodes-exp}
\end{figure}
\begin{figure}
\centering
\includegraphics[width=\linewidth]{"./images/schri11.png"}
\includegraphics[width=\linewidth]{"./images/schri12.png"}
\caption{Applicability of Exploits (\%) and Database Load (\%) (Averaged) vs. Runtime (ms)}
\label{fig:appl-load}
\end{figure}
In terms of speedup, when the number of entries in the exploit list is small, the serial approach has better performance. As discussed in Section \ref{sec:Task-perf-expec}, this is expected due to the time elapsed for the communication cost exceeding the time taken to generate a state. However, as the number of items in the exploit list increase, the Tasking Approach quickly begins to outperform the serial approach. It is notable that even when the tasking pipeline is not fully saturated (when there are less compute nodes assigned than tasks), the performance is still approximately equal to that of the serial approach. The other noticeable feature is that as more compute nodes are assigned, the speedup continues to increase.
Figure \ref{fig:overall-speedup} displays the overall minimum, maximum, and mean of speedup across all problem sizes. It is observable through the mean and maximum bars that as other problem size parameters increase, the speedup of the Tasking Approach also increases. Since database load, applicability of exploits, and number of exploits all affect the runtime, increasing the problem size through any of these parameters showcases the viability of the parallelized approach. At the same time, it is worth noting that the parallelized approach is not strictly better. The minimum speedups shown in Figure \ref{fig:overall-speedup} demonstrate that for small problem sizes, the serial approach performs better due to the communication costs.
\begin{figure}[htp]
\centering
\includegraphics[width=\linewidth]{"./images/schri13.png"}
\vspace{.2truein} \centerline{}
\caption{Minimum, Maximum, and Mean Speedup of MPI Tasking Across All Problem Sizes}
\label{fig:overall-speedup}
\end{figure}
Figure \ref{fig:overall-efficiency} displays the overall minimum, maximum, and mean of efficiency across all problem sizes. In terms of efficiency, 2 compute nodes offer the greatest value. While the 2 compute node configuration does offer the greatest efficiency, it does not provide a speedup greater than 1.0 on any of the testing cases conducted. The results also demonstrate that an odd number of compute nodes in a fully saturated pipeline has better efficiency that an even number of compute nodes. When referring to Figure \ref{fig:node-alloc}, when there is an odd number number of compute nodes, Task 1 is allocated more nodes than Task 2. Task 1 was responsible for iterating through an increased size of the exploit list, so more nodes is advantageous in distributing the workload. However, when many exploits were not applicable, Task 2 had a lower workload. Some test cases only had 6 applicable exploits, which is a substantially lower workload for Task 2 compared to cases where Task 1 had upwards of 49,000 exploits. As the applicability of exploits increases, the disparity in efficiency for odd and even number of nodes is not present.
\begin{figure}[htp]
\centering
\includegraphics[width=\linewidth]{"./images/schri14.png"}
\vspace{.2truein} \centerline{}
\caption{Minimum, Maximum, and Mean Efficiency of MPI Tasking Across All Problem Sizes}
\label{fig:overall-efficiency}
\end{figure}
Speedups and efficiencies were also computed across each parameter. Using pivot tables, mean speedups and mean efficiencies were computed for a parameter across all node configurations. Figures \ref{fig:param-exploit} and \ref{fig:param-appl} display the speedups and efficiencies of the exploit parameter and the applicability of exploits parameter, respectively. The number of nodes has the largest impact on the exploit parameter, and Figure \ref{fig:param-exploit} illustrates that even when fewer nodes are used, speedup can still be obtained as the exploit list grows in size. Figure \ref{fig:param-appl} demonstrates that though Task 2 has less of an impact on overall runtime and contribution to speedup, speedup is still achievable as more compute nodes are added and as the applicability of exploits increase. Though database load was not a parameter to easily include in preliminary testing, speedup is expected as this parameter changes. By dedicating nodes to solely handle database operations, the tasking pipeline is able to move to new state generation without the need to wait for all preceding database operations to complete.
\begin{figure}
\centering
\includegraphics[width=\linewidth]{"./images/schri15.png"}
\includegraphics[width=\linewidth]{"./images/schri16.png"}
\caption{Mean Speedup and Efficiency for the Exploit Parameter Across the Number of Compute Nodes}
\label{fig:param-exploit}
\end{figure}
\begin{figure}
\centering
\includegraphics[width=\linewidth]{"./images/schri17.png"}
\includegraphics[width=\linewidth]{"./images/schri18.png"}
\caption{Mean Speedup and Efficiency for the Applicability of Exploit Parameter Across the Number of Compute Nodes}
\label{fig:param-appl}
\end{figure}
\section{Conclusion and Future Work} \label{sec:FW}
This work presents a task parallelism approach for large-scale attack and compliance graphs. This approach is a distributed approach rather than a shared-memory approach, allowing for the generation of these large-scale graphs to be deployed on HPC systems. Tasks were identified in the generation process, with parallelization of the tasks clearly identified and incorporated into the tasking algorithm. The results of this approach highlighted its success, showing speedups as generation parameters and the number of nodes increased. Efficiencies were also computed, with various figures illustrating the efficiency across the generation process as a whole, as well as efficiencies across individual parameters.
Though the results presented in this work were preliminary, they still highlight the viability of this approach. Despite each Task having limited stress during the generation process, speedups of over 3.5x can still be obtained. Exploit applicability and database load parameters were almost entirely unexplored during the preliminary result benchmarking, and speedup is still achievable. As exploit applicability and database load are introduced into the generation process, both speedup and efficiency are expected to increase in future testing. With more compute time, the approach of this work can be deployed on a testing platform to examine how speedups and efficiencies change as the complexity of the generation process increases.
Future work can be performed to investigate and improve the method of this work. This work focused on a distributed approach to large-scale graph generation, but leaves room for additional parallelism at the node-level. For example, after work for Tasks 1 or 2 has been distributed to a node, the node can then leverage OpenMP for additional parallelism. Results can be obtained to show how the additional parallelism affects the speedup and efficiency of the approach.
Additional work can be performed to investigate long-term speedup and efficiency of the approach. This work made use of a local HPC cluster with a limited number of compute nodes. The generation algorithm can be deployed to larger clusters to measure speedup and efficiency as more nodes are added to the tasking pipeline. Scalability can likewise be reexamined as the number of nodes increases.
The analysis portion of this work also has room for additional investigations. This work measured speedup according to Amdahl \cite{Amdahl}. Since tasks are clearly defined and timing data is collected for each task, other speedup metrics can be used. Both Gustafson's Law \cite{Gust} and Sun and Ni's Law \cite{sun} can be leveraged to obtain other results regarding the speedup of the tasking approach.
%\bibliographyp
\bibliography{Bibliography}
\bibliographystyle{ieeetr}
\begin{IEEEbiography}[
{
\includegraphics[width=1in,height=1.25in,clip,keepaspectratio]{"./images/schri19.png"}
}
]
{Noah L. Schrick}
is a fourth-year PhD student in Computer Science at the University of Tulsa. He received his Bachelor of Science in Electrical and Computer Engineering and his Master of Science in Computer Science at the University of Tulsa.\par His research focus is on cybersecurity and compliance, where he is working on the analysis of large-scale attack and compliance graphs to detect, correct, and predict violations in regulations or mandates. He has additional research interests in high-performance computing, research computing, platform engineering, and scientific software development. Noah L. Schrick is a TU-Cyber Fellow at the University of Tulsa, where he focuses on the innovation and growth of industry-applicable research.
\end{IEEEbiography}
\begin{IEEEbiography}[
{
\includegraphics[width=1in,height=1.25in,clip,keepaspectratio]{"./images/schri20.jpg"}
}
]
{Peter J. Hawrylak}
is an Associate Professor in the Department of Electrical and Computer Engineering, with joint appointments in the Tandy School for Computer Science and the School of Cyber Studies, at The University of Tulsa, Tulsa, OK, USA. He has published more than 60 publications and holds 15 patents in the radio frequency identification (RFID), energy harvesting, and cyber-security areas. His research interests include RFID, security for low-power wireless devices, Internet of Things applications, critical infrastructure security, high-performance computing, and digital design. Dr. Hawrylak's research has been supported by NASA, DOD, the U.S. Army, DOE, Argonne National Laboratory, DOT, EPA, CDC, NSF, and OCAST.\par
Dr. Hawrylak is a senior member of the IEEE and IEEE Computer Society, has served as Secretary of the Tulsa Section of the IEEE 2015-2018, Vice-Chair of the Tulsa Section of the IEEE 2019-2020, and is currently serving as Chair of the Tulsa Section of the IEEE (2020-Present) leading the Section through the COVID-19 pandemic. He served as chair of the RFID Experts Group (REG) of Association for Automatic Identification and Mobility (AIM) in 2012-2013. Peter received AIM Inc.'s Ted Williams Award in 2015 for his contributions to the RFID industry. Dr. Hawrylak serves on the Organizing Committee of the International IEEE RFID Conference, and served two terms as the Editor-in-Chief of the IEEE RFID Virtual Journal (2016-2019) and also as the Editor-in-Chief of the International Journal of Radio Frequency Identification Technology and Applications (IJRFITA) journal published by InderScience Publishers, which focuses on the application and development of RFID technology.\par
Peter is a senior member (M'05-SM'17) of IEEE and the IEEE Computer Society, is a member of IEEE-HKN, and is a member of Tau Beta Pi. He has served as the faculty advisor for the IEEE-HKN chapter at The University of Tulsa (Zeta Nu chapter) from Aug. 2010 to Dec. 2020.
\end{IEEEbiography}
\end{document}

Binary file not shown.

After

Width:  |  Height:  |  Size: 164 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 76 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 51 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 23 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 184 KiB

View File

@ -0,0 +1,181 @@
<mxfile host="app.diagrams.net" modified="2023-04-22T22:53:12.998Z" agent="Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/112.0.0.0 Safari/537.36" etag="cYbAeeBUogMmzFaDdVZ4" version="21.1.4" type="device">
<diagram id="K7JRYQhel2MMmrMd0Y0x" name="Page-1">
<mxGraphModel dx="1587" dy="758" grid="1" gridSize="10" guides="1" tooltips="1" connect="1" arrows="1" fold="1" page="1" pageScale="1" pageWidth="850" pageHeight="1100" math="0" shadow="0">
<root>
<mxCell id="0" />
<mxCell id="1" parent="0" />
<mxCell id="Yg0w0YBVZnjJYA129H6i-3" value="" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;" parent="1" source="Yg0w0YBVZnjJYA129H6i-1" target="Yg0w0YBVZnjJYA129H6i-2" edge="1">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="Yg0w0YBVZnjJYA129H6i-1" value="Pull next applicable exploit" style="rounded=0;whiteSpace=wrap;html=1;" parent="1" vertex="1">
<mxGeometry x="370" y="60" width="120" height="60" as="geometry" />
</mxCell>
<mxCell id="Yg0w0YBVZnjJYA129H6i-5" value="" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;" parent="1" source="Yg0w0YBVZnjJYA129H6i-2" target="Yg0w0YBVZnjJYA129H6i-4" edge="1">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="S02b3ZSHm7epOyOR5ffc-5" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;entryX=0.5;entryY=0;entryDx=0;entryDy=0;" parent="1" source="Yg0w0YBVZnjJYA129H6i-2" target="5dyq7pQDjFANX0ohcFdJ-4" edge="1">
<mxGeometry relative="1" as="geometry">
<mxPoint x="645" y="270" as="targetPoint" />
<Array as="points">
<mxPoint x="280" y="205" />
<mxPoint x="280" y="210" />
<mxPoint x="277" y="210" />
</Array>
</mxGeometry>
</mxCell>
<mxCell id="S02b3ZSHm7epOyOR5ffc-6" value="&lt;font style=&quot;font-size: 13px&quot;&gt;No&lt;/font&gt;" style="edgeLabel;html=1;align=center;verticalAlign=middle;resizable=0;points=[];" parent="S02b3ZSHm7epOyOR5ffc-5" vertex="1" connectable="0">
<mxGeometry x="-0.3739" relative="1" as="geometry">
<mxPoint as="offset" />
</mxGeometry>
</mxCell>
<mxCell id="Yg0w0YBVZnjJYA129H6i-2" value="Part of a group?" style="rhombus;whiteSpace=wrap;html=1;" parent="1" vertex="1">
<mxGeometry x="380" y="160" width="100" height="90" as="geometry" />
</mxCell>
<mxCell id="Yg0w0YBVZnjJYA129H6i-6" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;entryX=1;entryY=0.75;entryDx=0;entryDy=0;" parent="1" source="Yg0w0YBVZnjJYA129H6i-4" target="Yg0w0YBVZnjJYA129H6i-1" edge="1">
<mxGeometry relative="1" as="geometry">
<Array as="points">
<mxPoint x="520" y="345" />
<mxPoint x="520" y="105" />
</Array>
</mxGeometry>
</mxCell>
<mxCell id="Yg0w0YBVZnjJYA129H6i-7" value="Break" style="edgeLabel;html=1;align=center;verticalAlign=middle;resizable=0;points=[];fontSize=13;fontStyle=1" parent="Yg0w0YBVZnjJYA129H6i-6" vertex="1" connectable="0">
<mxGeometry x="-0.0684" y="1" relative="1" as="geometry">
<mxPoint as="offset" />
</mxGeometry>
</mxCell>
<mxCell id="Yg0w0YBVZnjJYA129H6i-8" value="&lt;font style=&quot;font-size: 13px&quot;&gt;Fired&lt;/font&gt;" style="edgeLabel;html=1;align=center;verticalAlign=middle;resizable=0;points=[];" parent="Yg0w0YBVZnjJYA129H6i-6" vertex="1" connectable="0">
<mxGeometry x="-0.8947" y="1" relative="1" as="geometry">
<mxPoint y="-16" as="offset" />
</mxGeometry>
</mxCell>
<mxCell id="isFYcWvU-x2YYOKhLKfV-26" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;" parent="1" source="Yg0w0YBVZnjJYA129H6i-4" target="isFYcWvU-x2YYOKhLKfV-25" edge="1">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="Yg0w0YBVZnjJYA129H6i-4" value="Group status?" style="rhombus;whiteSpace=wrap;html=1;" parent="1" vertex="1">
<mxGeometry x="380" y="300" width="100" height="90" as="geometry" />
</mxCell>
<mxCell id="Yg0w0YBVZnjJYA129H6i-9" value="Yes" style="text;html=1;align=center;verticalAlign=middle;resizable=0;points=[];autosize=1;strokeColor=none;fillColor=none;fontSize=13;" parent="1" vertex="1">
<mxGeometry x="425" y="260" width="40" height="20" as="geometry" />
</mxCell>
<mxCell id="isFYcWvU-x2YYOKhLKfV-6" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;entryX=0.317;entryY=0.014;entryDx=0;entryDy=0;entryPerimeter=0;" parent="1" target="5dyq7pQDjFANX0ohcFdJ-5" edge="1">
<mxGeometry relative="1" as="geometry">
<mxPoint x="361.5833333333335" y="620" as="sourcePoint" />
<mxPoint x="404.2099999999998" y="685.04" as="targetPoint" />
</mxGeometry>
</mxCell>
<mxCell id="isFYcWvU-x2YYOKhLKfV-8" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;exitX=0.5;exitY=1;exitDx=0;exitDy=0;entryX=-0.013;entryY=0.401;entryDx=0;entryDy=0;entryPerimeter=0;" parent="1" source="5dyq7pQDjFANX0ohcFdJ-4" target="5dyq7pQDjFANX0ohcFdJ-5" edge="1">
<mxGeometry relative="1" as="geometry">
<Array as="points">
<mxPoint x="280" y="350" />
<mxPoint x="280" y="718" />
</Array>
<mxPoint x="645" y="340" as="sourcePoint" />
<mxPoint x="454.25" y="685.04" as="targetPoint" />
</mxGeometry>
</mxCell>
<mxCell id="S02b3ZSHm7epOyOR5ffc-14" value="Not Fired" style="text;html=1;align=center;verticalAlign=middle;resizable=0;points=[];autosize=1;strokeColor=none;fillColor=none;fontSize=13;" parent="1" vertex="1">
<mxGeometry x="360" y="380" width="70" height="20" as="geometry" />
</mxCell>
<mxCell id="isFYcWvU-x2YYOKhLKfV-13" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;entryX=0.5;entryY=0;entryDx=0;entryDy=0;" parent="1" source="isFYcWvU-x2YYOKhLKfV-1" edge="1">
<mxGeometry relative="1" as="geometry">
<mxPoint x="427.25" y="880.0000000000002" as="targetPoint" />
</mxGeometry>
</mxCell>
<mxCell id="isFYcWvU-x2YYOKhLKfV-1" value="Pull next loop vector exploit" style="rounded=0;whiteSpace=wrap;html=1;" parent="1" vertex="1">
<mxGeometry x="367.25" y="800" width="120" height="60" as="geometry" />
</mxCell>
<mxCell id="isFYcWvU-x2YYOKhLKfV-10" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;" parent="1" target="isFYcWvU-x2YYOKhLKfV-1" edge="1">
<mxGeometry relative="1" as="geometry">
<mxPoint x="427.25" y="760" as="sourcePoint" />
</mxGeometry>
</mxCell>
<mxCell id="isFYcWvU-x2YYOKhLKfV-17" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;exitX=0.5;exitY=1;exitDx=0;exitDy=0;entryX=0.5;entryY=0;entryDx=0;entryDy=0;" parent="1" edge="1">
<mxGeometry relative="1" as="geometry">
<mxPoint x="427.25" y="990" as="targetPoint" />
<mxPoint x="427.25" y="960.0000000000002" as="sourcePoint" />
</mxGeometry>
</mxCell>
<mxCell id="isFYcWvU-x2YYOKhLKfV-18" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;entryX=1;entryY=0.25;entryDx=0;entryDy=0;exitX=1;exitY=0.5;exitDx=0;exitDy=0;" parent="1" source="isFYcWvU-x2YYOKhLKfV-23" target="Yg0w0YBVZnjJYA129H6i-1" edge="1">
<mxGeometry relative="1" as="geometry">
<mxPoint x="430" y="970" as="sourcePoint" />
<Array as="points">
<mxPoint x="580" y="1035" />
<mxPoint x="580" y="75" />
</Array>
</mxGeometry>
</mxCell>
<mxCell id="isFYcWvU-x2YYOKhLKfV-16" value="Yes" style="text;html=1;align=center;verticalAlign=middle;resizable=0;points=[];autosize=1;strokeColor=none;fillColor=none;" parent="1" vertex="1">
<mxGeometry x="337.25" y="1010" width="40" height="20" as="geometry" />
</mxCell>
<mxCell id="isFYcWvU-x2YYOKhLKfV-22" value="No" style="text;html=1;align=center;verticalAlign=middle;resizable=0;points=[];autosize=1;strokeColor=none;fillColor=none;" parent="1" vertex="1">
<mxGeometry x="490" y="1020" width="30" height="20" as="geometry" />
</mxCell>
<mxCell id="isFYcWvU-x2YYOKhLKfV-24" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;entryX=0;entryY=0.5;entryDx=0;entryDy=0;" parent="1" source="isFYcWvU-x2YYOKhLKfV-23" target="isFYcWvU-x2YYOKhLKfV-1" edge="1">
<mxGeometry relative="1" as="geometry">
<Array as="points">
<mxPoint x="327.25" y="1035" />
<mxPoint x="327.25" y="830" />
</Array>
</mxGeometry>
</mxCell>
<mxCell id="isFYcWvU-x2YYOKhLKfV-23" value="More items?" style="rhombus;whiteSpace=wrap;html=1;" parent="1" vertex="1">
<mxGeometry x="377.25" y="990" width="100" height="90" as="geometry" />
</mxCell>
<mxCell id="isFYcWvU-x2YYOKhLKfV-27" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;entryX=0.5;entryY=0;entryDx=0;entryDy=0;" parent="1" source="isFYcWvU-x2YYOKhLKfV-25" edge="1">
<mxGeometry relative="1" as="geometry">
<mxPoint x="361.5" y="550" as="targetPoint" />
<Array as="points">
<mxPoint x="362" y="470" />
<mxPoint x="362" y="540" />
</Array>
</mxGeometry>
</mxCell>
<mxCell id="isFYcWvU-x2YYOKhLKfV-28" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;entryX=0.5;entryY=0;entryDx=0;entryDy=0;" parent="1" source="isFYcWvU-x2YYOKhLKfV-25" edge="1">
<mxGeometry relative="1" as="geometry">
<mxPoint x="498.5" y="550" as="targetPoint" />
<Array as="points">
<mxPoint x="500" y="470" />
<mxPoint x="500" y="540" />
<mxPoint x="499" y="540" />
</Array>
</mxGeometry>
</mxCell>
<mxCell id="isFYcWvU-x2YYOKhLKfV-30" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;entryX=1;entryY=0.5;entryDx=0;entryDy=0;" parent="1" source="isFYcWvU-x2YYOKhLKfV-25" target="Yg0w0YBVZnjJYA129H6i-1" edge="1">
<mxGeometry relative="1" as="geometry">
<Array as="points">
<mxPoint x="550" y="470" />
<mxPoint x="550" y="90" />
</Array>
</mxGeometry>
</mxCell>
<mxCell id="isFYcWvU-x2YYOKhLKfV-31" value="&lt;font style=&quot;font-size: 12px&quot;&gt;No&lt;/font&gt;" style="edgeLabel;html=1;align=center;verticalAlign=middle;resizable=0;points=[];fontStyle=0" parent="isFYcWvU-x2YYOKhLKfV-30" vertex="1" connectable="0">
<mxGeometry x="-0.8744" y="-4" relative="1" as="geometry">
<mxPoint y="-6" as="offset" />
</mxGeometry>
</mxCell>
<mxCell id="isFYcWvU-x2YYOKhLKfV-25" value="All assets ready&lt;br&gt;&amp;nbsp;to fire?" style="rhombus;whiteSpace=wrap;html=1;" parent="1" vertex="1">
<mxGeometry x="375" y="420" width="110" height="100" as="geometry" />
</mxCell>
<mxCell id="isFYcWvU-x2YYOKhLKfV-29" value="Yes" style="text;html=1;align=center;verticalAlign=middle;resizable=0;points=[];autosize=1;strokeColor=none;fillColor=none;" parent="1" vertex="1">
<mxGeometry x="430" y="520" width="40" height="20" as="geometry" />
</mxCell>
<mxCell id="5dyq7pQDjFANX0ohcFdJ-1" value="SET Loop vector = map[group]" style="rounded=1;whiteSpace=wrap;html=1;" vertex="1" parent="1">
<mxGeometry x="297.25" y="550" width="120" height="70" as="geometry" />
</mxCell>
<mxCell id="5dyq7pQDjFANX0ohcFdJ-3" value="SET Group status&amp;nbsp;&lt;br style=&quot;border-color: var(--border-color);&quot;&gt;= Fired" style="rounded=1;whiteSpace=wrap;html=1;" vertex="1" parent="1">
<mxGeometry x="440" y="550" width="120" height="70" as="geometry" />
</mxCell>
<mxCell id="5dyq7pQDjFANX0ohcFdJ-4" value="SET Loop vector = applicable exploit&amp;nbsp; &amp;nbsp;" style="rounded=1;whiteSpace=wrap;html=1;" vertex="1" parent="1">
<mxGeometry x="217.25" y="280" width="120" height="70" as="geometry" />
</mxCell>
<mxCell id="5dyq7pQDjFANX0ohcFdJ-5" value="Make new state" style="rounded=0;whiteSpace=wrap;html=1;" vertex="1" parent="1">
<mxGeometry x="365" y="690" width="120" height="70" as="geometry" />
</mxCell>
<mxCell id="5dyq7pQDjFANX0ohcFdJ-6" value="Update state" style="rounded=0;whiteSpace=wrap;html=1;" vertex="1" parent="1">
<mxGeometry x="365" y="880" width="120" height="80" as="geometry" />
</mxCell>
</root>
</mxGraphModel>
</diagram>
</mxfile>

Binary file not shown.

After

Width:  |  Height:  |  Size: 99 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 87 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 187 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 90 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 29 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 35 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 298 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 157 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 25 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 20 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 22 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 27 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 24 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 52 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 44 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 56 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 39 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.9 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 52 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.7 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 60 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 33 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 53 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 71 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 7.7 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.8 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 21 KiB

View File

@ -0,0 +1,21 @@
This is pdfTeX, Version 3.141592653-2.6-1.40.25 (TeX Live 2023/Arch Linux) (preloaded format=pdflatex 2023.9.6) 10 SEP 2023 15:27
entering extended mode
restricted \write18 enabled.
%&-line parsing enabled.
**
! Emergency stop.
<*>
End of file on the terminal!
Here is how much of TeX's memory you used:
5 strings out of 477985
147 string characters out of 5840059
1849388 words of memory out of 5000000
20305 multiletter control sequences out of 15000+600000
512287 words of font info for 32 fonts, out of 8000000 for 9000
14 hyphenation exceptions out of 8191
0i,0n,0p,43b,6s stack positions out of 10000i,1000n,20000p,200000b,200000s
! ==> Fatal error occurred, no output PDF file produced!